4.1. Характеристика солнечного излучения. Световой климат. Вся органическая жизнь на земле обязана своим существованием солнечной радиации, которая является источником энергии, тепла и света на земном шаре. Солнцем испускаются корпускулярные и электромагнитные излучения. Корпускулярные излучения называются солнечным ветром , они представлены электронами, протонами, ядрами гелия и другими частицами . Электромагнитный спектр солнечного излучения весьма широк, в него входят излучения диапазона радиочастот, инфракрасное, видимое, ультрафиолетовое, гамма - и рентгеновское излучения. Солнечное электромагнитное излучение распространяется со скоростью 300000 км/сек и достигает Земли за 8 минут. Частицы же солнечного ветра имеют меньшую скорость – 300 км/сек, в связи с чем достигают Земли через несколько суток. Скорость и интенсивность излучений резко возрастают в периоды солнечной активности. Проявлениями солнечной активности являются солнечные пятна и солнечные вспышки. Солнечные пятна представляют собой гигантские электромагниты с поперечником в несколько тысяч километров и напряженностью магнитного поля в тысячи раз выше напряженности магнитного поля Земли. Солнечные вспышки являются отражением взрывов, происходящих на Солнце. Мощность вспышек сравнима с мощностью взрыва тысяч термоядерных бомб. Во время вспышек усиливается выброс коротковолнового ионизирующего излучения и высокоэнергетических частиц, скорость которых может достигать 1000-2000 км/сек, вследствие чего до Земли они доходят уже за 2-3 суток.

На пути к Земле солнечный ветер взаимодействует в основном с геомагнитным полем Земли, а электромагнитное излучение – с нижними слоями стратосферы и тропосферой. Магнитное поле действует как броня и не пропускает заряженные частицы близко к Земле. Электромагнитное же излучение вступает в химическое и физическое взаимодействие с компонентами земной атмосферы. При этом происходит ослабление интенсивности солнечного излучения, поглощение озоновым слоем коротковолнового и формирование длинноволнового излучения, за счет неравномерного нагрева земной поверхности и атмосферы осуществляются циркуляция воздушных масс и другие процессы, определяющие погодные и климатические условия. Поверхности Земли достигают лишь средне- и длинноволновое ультрафиолетовое, видимое и коротковолновое инфракрасное излучения.

Количество солнечного излучения, доходящее до земной поверхности в той или иной местности, называется световым климатом . Световой климат обусловливается как природными (географическая широта, местности, сезон года, время суток, рельеф местности, климат, погода, отражательная способность земной поверхности) так и антропогенными факторами (загрязнение атмосферы и др.).

Мощность общего потока солнечного излучения на поверхности Земли зависит от толщины слоя атмосферы, через которую она проходит. Толщина этого слоя определяется высотой солнцестояния над горизонтом и высотой местности над уровнем моря. Чем выше Солнце над горизонтом, тем меньше толщина атмосферы, через которую проходят солнечные лучи. Так, если масса атмосферы (толщина слоя воздуха на уровне моря) при высоте стояния Солнца 60° равна в условных единицах 1,1, то при заходе и восходе Солнца – 35,4, т.е. косые лучи проходят больший путь до земной поверхности, чем прямые. Уменьшением толщины атмосферы объясняется и возрастание интенсивности солнечной радиации по мере увеличения высоты местности.

Высота солнцестояния зависит от географической широты, времени года и суток. С увеличением географической широты, т.е. с удалением от экватора, высота солнцестояния уменьшается. Снижается она и в зимние месяцы. Изменение высоты солнцестояния отражается не только на количестве, но и качественном составе солнечного излучения. Так, с уменьшением высоты солнцестояния снижается доля ультрафиолетового и видимого излучения, увеличивается доля инфракрасного. Если в зените (90º) доля ультрафиолетового излучения составляет 4%, а видимого – 46%, то у горизонта ультрафиолетовое излучение практически отсутствует, а доля видимого снижается до 28%.

В атмосфере постоянно происходят процессы поглощения, рассеивания и отражения солнечного света. Поэтому общее суммарное излучение , достигающее земной поверхности, складывается из прямого, исходящего непосредственного от Солнца, рассеянного небосводом и отраженного от поверхности различных объектов. Чем больше высота солнцестояния, тем больше величина прямого излучения. Облака, отражая прямое солнечное излучение, увеличивают его рассеяние, в связи с чем интенсивность солнечного излучения может снижаться на 47-56%. В загрязненной атмосфере солнечное излучение поглощается пылью, газами, аэрозолями, дымом, поступающими в воздух с промышленными выбросами, выбросами автотранспорта, отопительных установок и др. Значительно снижается суммарное солнечное излучение в туманную и влажную погоду.

Особенно сказываются процессы рассеяния и отражения солнечного излучения на интенсивности ультрафиолетовой составляющей, доля которой в солнечном спектре и так невелика – от 0,6 до 10% на уровне земной поверхности. Причем, большую часть из них – до 70-75% составляет рассеянное, а не прямое, излучение. В высоких широтах (выше 57,5°) наблюдается дефицит ультрафиолетового излучения: в течение ноября - февраля средневолновое ультрафиолетовое излучение практически отсутствует, а в октябре – марте интенсивность его весьма мала. В районах, расположенных между 57,5° и 42,5° южных и северных широт, большей частью наблюдается ультрафиолетовый комфорт, в зонах ниже 42,5° - избыточное ультрафиолетовое излучение. Более высока интенсивность ультрафиолетового излучения и в горах, где на каждые 1000 м высоты над уровнем моря она возрастает на 15%.

4.2.Влияние солнечной радиации на организм человека. Солнечная радиация оказывает выраженное биологическое действие. Под действием энергии солнечного излучения в организме происходят разнообразные биохимические и физиологические превращения, совокупность которых называется фотобиологическими процессами. В основе их лежат фотохимические реакции: фотоионизация, фотовосстановление и окисление, фотодиссоциация и др.

Характер фотобиологических процессов зависит от энергии излучения. Благодаря энергии солнечного излучения стимулируется обмен веществ, синтез углеводов, жиров, белков, витаминов и пигментов, в частности, в растениях – синтез хлорофилла и др. Важную роль играют составляющие солнечного спектра в обеспечении процесса зрения у животных организмов, регуляции роста и развития растений, связанных с такими их свойствами, как фототаксис, фототропизм, и фотопериодизм. Вместе с тем, излучения, обладающие значительной энергией, оказывают повреждающее действие на организм.

Энергия солнечного излучения определяется длиной его волны: чем меньше длина, тем больше энергия. Среди излучений солнечного спектра, достигающих земной поверхности, наибольшей длиной (760-4000 нм) обладает инфракрасное излучение, затем следует видимое излучение - 400-760 нм. Наименьшую длину волны имеет ультрафиолетовое излучение - 290-400 нм, поэтому кванты этого излучения несут наибольший запас энергии. В связи с разным уровнем энергии, передаваемым клеткам, инфракрасное, видимое и ультрафиолетовое излучения оказывают неоднозначное воздействие на организм человека.

Гигиеническое значение инфракрасной радиации . Основная часть электромагнитного спектра солнечной радиации представлена инфракрасным излучением. На земной поверхности при высоте солнцестояния 60° она составляет 53%, у горизонта – 72%. Инфракрасные лучи, обладающие большой длиной волны (4000-15000 нм), задерживаются при прохождении через атмосферу, поверхности же Земли достигают более короткие лучи - с длиной волны 760- 4000нм.

Главный эффект инфракрасного излучения – тепловой. Именно этот эффект определяет важнейшую роль инфракрасного излучения в процессах планетарного масштаба. Благодаря энергии инфракрасного излучения происходит нагревание земной поверхности, неравномерность которого обусловливает движение воздушных и водных масс на Земле и формирование погодных и климатических условий.

Таким образом, влиянием климата и погоды в определенной степени реализуется опосредованное воздействие инфракрасного излучения на организм. При прямом действии инфракрасное солнечное излучение вызывает поверхностное или глубинное прогревание тканей. Глубоко (до 4-5 см) проникает в ткани коротковолновое инфракрасное излучение (760 -1500 нм), тогда как лучи с длиной волны 1500-4000 нм поглощаются преимущественно поверхностными слоями кожи, богатыми терморецепторами, в связи с чем при действии длинноволнового ИК-излучения более выражено ощущение жжения. Несмотря на малую энергию фотонов, ИК-излучение оказывает, хотя и слабое, фотохимическое действие , проявляющееся в некотором усилении обмена веществ, ускорении ферментативных и иммунобиологических процессов, усилении биологического действия ультрафиолетовых лучей. За счет нагрева тканей, действия активных соединений, образующихся при фотохимических реакциях, а также раздражения нервных рецепторов кожи при действии ИК-излучения усиливается кровоток, ослабляется тонус мышц и сосудов, нормализуются вегетативные реакции, вследствие чего проявляется болеутоляющий и противовоспалительный эффект . Эти свойства ИК-излучения широко используются в физиотерапевтической практике, где используются его искусственные источники – лампы соллюкс и Минина.

При длительном и интенсивном воздействии солнечного ИК-излучения может наблюдаться перегревание организма различной степени выраженности, в тяжелых случаях – тепловой или солнечный удар. Однако наиболее мощному воздействию ИК-излучения люди подвергаются в производственных условиях. В горячих цехах интенсивность ИК-излучения может достигать 12,6-25,2 МДж/(м 2 ч), тогда как интенсивность солнечного теплового излучения в умеренных широтах, например, не превышает 3,77 МДж/(м 2 ·ч). Длительное воздействие как производственного, так и солнечного ИК-излучения, помимо перегревания, может привести к развитию тепловой катаракты вследствие поглощения хрусталиком тепловых лучей и затрудненного отвода тепла из-за плохой васкуляризации.

Гигиеническое значение видимого света. Видимые лучи в спектре солнечного электромагнитного излучения составляют от 28% при стоянии солнца над горизонтом до 46% при стоянии солнца в зените, при голубом небе – 65 %. Дневная освещенность на открытой местности зависит от многих факторов: высоты солнцестояния, погодных и климатических условий, чистоты воздуха. Диапазон значений освещенности в связи с этими условиями широк, он колеблется от 65000 до 1000 лк и менее.

Видимое излучение обладает более выраженным, чем инфракрасные лучи, фотохимическим действием, которое проявляется большей частью в присутствии фотосенсибилизаторов. Фотосенсибилизаторами называются вещества, которые, вбирая кванты лучистой энергии, претерпевают кратковременные изменения, а, отдавая окружающим тканям эту энергию в концентрированном виде, вновь восстанавливают свои свойства. Одними из таких фотосенсибилизаторов являются зрительные пигменты сетчатки, при воздействии на которые видимого излучения обеспечивается работа зрительного анализатора . При этом весьма важной является способность видимого излучения обусловливать не монохроматичную зрительную информацию, а представленную в различных цветах, что связано с присутствием в его спектре излучений различного цвета: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового. Цветовая гамма, создаваемая солнечным светом, оказывает различное воздействие на организм, и, прежде всего, на психоэмоциональную сферу: синий и фиолетовый цвета угнетают, голубой успокаивает, зеленый индифферентен, ярко-желтый раздражает, красный – возбуждает. Наиболее оптимальными для работы зрительного анализатора считаются волны зеленого и желтого диапазонов спектра видимого света.

Действуя рефлекторно через зрительный анализатор и, в некоторой степени, через периферические нервные окончания, солнечный свет оказывает общебиологическое действие . Он стимулирует обменные процессы в организме, повышает активность коры больших полушарий головного мозга, усиливает секрецию гипофиза, в связи с чем повышается жизненный тонус человека, улучшается его самочувствие и эмоциональное состояние. Отмечено, что видимое излучение играет определенную роль и в процессах роста и развития организма.

Свет является главным синхронизатором биологических ритмов у человека: суточных, сезонных, годовых и др. Рассогласование между природным (свет) и техногенными (часы, радио, телевидение, искусственное освещение, график и место работы и др.) регуляторами биоритмов приводит к нарушению режима сна и бодрствования, ухудшению самочувствия, развитию депрессий и т.д.).

Видимое излучение, особенно в диапазоне волн, граничащих с инфракрасным излучением, оказывает тепловое воздействие , доля которого составляет около половины тепловой энергии, передаваемой солнечным излучением. Коротковолновая фиолетовая часть спектра, граничащая с длинноволновым ультрафиолетовым излучением, вызывает те же эффекты, что и последнее – эритемный, загарный и слабо бактерицидный .

Особое гигиеническое значение видимого света для работы органа зрения, за счет которого организм получает до 80 % информации о внешнем мире, требует создания достаточного уровня естественного освещения в помещениях, как за счет прямого солнечного облучения (инсоляции), так и за счет рассеянного и отраженного (см. главу VII).

Гигиеническое значение ультрафиолетового излучения. Ультрафиолетовое излучение обладает значительно большей энергией, чем инфракрасное и видимое. Но и спектр самого излучения неоднороден по энергии фотонов, вследствие чего в нем выделяют 3 области, отличающиеся по длине волны и биологической активности: область А- длинноволновое излучение (ближнее ультрафиолетовое, эритемно-загарное) с длиной волны 400-320нм; область В – средневолновое излучение (витаминообразующее) с длиной волны 320-280 нм; область С – коротковолновое излучение (далекое ультрафиолетовое, бактерицидное) с длиной волны 280-210 нм. До земной поверхности, как отмечалось выше, доходят только длинно- и средневолновые ультрафиолетовые лучи. Коротковолновое ультрафиолетовое излучение обычно получают с помощью искусственных источников.

Ультрафиолетовые излучения могут оказывать полезное (биогенное) действие и повреждающее (абиогенное ). Характер действия зависит от длины волны излучения и его дозы. Биогенный эффект наблюдается при действии малых, не превышающих оптимального уровня, доз длинно- и средневолнового излучения. Абиогенные эффекты характерны, прежде всего, для коротковолнового УФ-излучения, энергия которого намного превышает энергию УФ-лучей других диапазонов. Однако абиогенное действие могут оказывать и длинно-, и средневолновые лучи, если получаемая доза их намного превышает пороговую эритемную.

Биогенное действие проявляется в виде общестимулирующего, эритемно-загарного и антирахитического (вит. Д –образующего) эффектов. В механизме действия ультрафиолетового излучения выделяют несколько компонентов: биофизический, гуморальный и нервно-рефлекторный. Гуморальный компонент обусловлен образованием в результате фотохимических реакций биологически активных соединений (гистамина и гистаминоподобных веществ, ацетилхолина, серотонина и др.), которые стимулируют обменные процессы в организме. Биофизический компонент связан с изменением ионного состава и коллоидного состояния белков клеток вследствие фотоэлектрического действия УФ-излучения. И, наконец, нервно-рефлекторный компонент характеризуется стимуляцией многих функций вследствие раздражения нервных окончаний в коже образующимися гистамином и гистаминоподобными веществами и другими соединениями.

Благодаря сочетанному гуморальному, биофизическому и нервно-рефлекторному воздействиям проявляется выраженный общестимулирующий эффект УФ-излучения. В частности, повышается активность ферментов тканевого дыхания, активируются процессы метаболизма белков, жиров, углеводов, минеральных веществ, стимулируются кроветворение, рост клеток, регенерация тканей. Весьма важным является также повышение резистентности организма к инфекциям, что объясняется усилением фагоцитарной активности лейкоцитов, бактерицидных свойств кожи и крови, стимуляцией синтеза антител. Следует отметить, что под действием УФ-излучения повышается устойчивость не только к инфекциям, но и к действию ионизирующих излучений, токсических и канцерогенных агентов, фиброгенных пылей и др.

Общестимулирующим действием обладают как длинно- , так и средневолновые УФ-лучи, но наиболее выражено оно у средневолнового УФ-излучения. Кроме общебиологического действия для каждого диапазона УФ-излучения характерны и свои специфические эффекты. Так, длинноволновое УФ-излучение оказывает преимущественно эритемно-загарное действие, а средневолновое – стимулирует синтез вит.Д в коже и обладает слабым бактерицидным действием. Ультрафиолетовая эритема развивается через 1-3 часа после облучения, а иногда и раньше. Ее отличают четкие контуры, а также последующее образование пигмента меланина в коже (загар). Загар, а также утолщение эпидермиса, развивающееся под влиянием УФ-лучей, являются защитной реакцией организма на действие солнечной радиации. Быстрое образование загара – один из показателей хорошей реактивности организма.

Средневолновые УФ-лучи обладают антирахитическим действием, так как способствуют образованию в коже витаминов Д 2 , Д 3 . Д 4 путем изомеризации в фотохимических реакциях провитаминов Д. Наибольшим антирахитическим действием отличаются лучи с длиной волны 313 ммк. При недостаточном облучении УФ-лучами процессы образования вит. Д замедляются, вследствие чего нарушается фосфорно-кальциевый обмен и процессы остеобразования. У детей развиваются рахит, тетания, замедляются процессы роста и развития. У взрослых могут наблюдаться явления остеопороза, ослабевает связочный аппарат, плохо срастаются кости при переломах, эмаль зубов становится хрупкой и быстро разрушается.

Таким образом, наиболее ценными в биологическом отношении являются средневолновые УФ-лучи, так как именно они обладают выраженным общестимулирующим, антирахитическим и закаливающим действием, укрепляют иммунный статус организма, способствуют хорошей регенерации тканей, стимулируют процессы роста и развития. Немаловажное значение имеет также вызываемая ими активация процессов высшей нервной деятельности, за счет которой повышается умственная работоспособность, предупреждается раннее развитие утомляемости. Описан положительный эффект УФ-облучения у больных неосложненными формами ишемической болезни сердца и гипертонической болезни.

Современная среда характеризуется повышенным риском развития ультрафиолетовой недостаточности (солнечного голодания) , которая обусловливается не только климатическими особенностями региона, но и условиями быта и трудовой деятельности людей, загрязнением воздуха, нерациональной планировкой жилых и общественных зданий, преобладанием туманных и пасмурных дней, и т.д. Наиболее часто характерные для УФ-недостаточности проявления наблюдаются у проживающих в северных широтах, рабочих горнорудной, угольной промышленности, метростроителей, детей, учащихся школ и вузов, находящихся большую часть дня в помещении. Для профилактики светового голодания планировка и застройка населенных пунктов должна осуществляться так, чтобы обеспечить не менее чем 3-х часовую инсоляцию окон жилых помещений (см. главу VII). Оконные стекла должны быть прозрачными для ультрафиолетового излучения, что не принимается во внимание при современном строительстве, когда окна большинства общественных учреждений застекляются тонированными стеклами. Должны проводиться активные мероприятия по предупреждению загрязнения атмосферного воздуха пылью, дымом, копотью, химическими веществами.

Наряду с указанным для профилактики светового голодания проводится УФ-облучение искусственными селективными и интегральными источниками УФ-излучения. Селективные источники (эритемные люминесцентные лампы - ЭУВ) дают излучения, максимум которых сосредоточен в одной узкой части УФ-спектра. Спектр излучения интегральных источников (прямые ртутно-кварцевые лампы - ПРК) представлен излучениями всех диапазонов УФ-спектра и видимого спектра. Для облучения используются светооблучательные установки длительного и кратковременного действия. В светооблучательных установках длительного действия лампы обычно встроены в светильники помещений вместе с обычными люминесцентными лампами, используемыми для освещения. Профилактическая доза при этом получается в течение 3-6 часов пребывания в помещении. При кратковременном облучении, которое проводится в специальных помещениях – фотариях , профилактическая доза получается за несколько минут. Особенно важным является восполнение светового голодания для детей, так как их организм наиболее чувствителен к недостатку УФ-излучения. При проведении УФ-облучения обязательно его дозирование и четкий контроль за ним. Вначале определяют биологическую (эритемную) дозу облучения с помощью биодозиметра И.Ф.Горбачева. Она равна минимальному времени облучения незагорелой кожи на предплечье или животе, после которого через 8-14 часов появляется минимально выраженная эритема. Ежедневная суточная доза при облучении, проводимом с профилактической целью, составляет 1/8 -3/4 биодозы. Обычно облучение в установках кратковременного действия начинают с 1/4 или 1/8 биодозы в зависимости от состояния человека и, прибавляя ежедневно или через день такими же долями, доводят до облучения в дозе, равной 1,5 биодозам, после чего делают перерывы на 2-3 месяца.

Светооблучательные установки длительного действия устанавливают, прежде всего в детских садах, детдомах, яслях, школах, больницах, санаториях, домах отдыха, общежитиях, производственных помещениях, лишенных естественного света, спортивных залах. В этих помещениях суточная профилактическая доза получается в течение целого дня.

Коротковолновые УФ-лучи обладают выраженным бактерицидным действием, а также оказывают вредное воздействие на организм человека. Абиогенное действие проявляют и длинно- и средневолновые лучи, если интенсивность облучения высока (5 и более минимальных эритемных биодоз). К абиогенным эффектам ультрафиолетового излучения относятся ожоги, фотодерматиты, эрозии, язвы, кератоконъюнктивиты, кератиты, катаракта, птеригий, солнечный эластоз, фотосенсибилизация, обострение хронических заболеваний внутренних органов, канцерогенное и мутагенное действие. Канцерогенное действие в основном характерно для излучения с длиной волны 280-340 нм, но оно реализуется лишь при длительном воздействии очень высоких доз (свыше 40 биодоз) солнечного облучения или излучения от искусственных источников. Вместе с тем, прогнозируется увеличение заболеваемости раком кожи вследствие увеличения количества и размеров озоновых дыр.

Абиогенные эффекты могут быть обусловлены не только солнечным излучением, но и различными искусственными источниками ультрафиолетового излучения: бактерицидными облучателями, электросварочными аппаратами, плазменной горелкой, фотоэлектрическим сканнером, лазерами, флюоресцентными панелями и др. Для профилактики неблагоприятного воздействия солнечного УФ-излучения работы на открытом воздухе не должны проводиться в период с 10 до 14 часов или же работа должна проводиться с ограничением времени пребывания на солнце и в солнцезащитная одежде с использованием солнцезащитных средств. При работе с искусственными источниками обязательно нормирование УФ-излучения, использование защитных средств, соответствующей сигнализации.

5. Природный химический состав воздуха и его гигиеническое значение.

Природный химический состав атмосферного воздуха, как известно, на 20,95% представлен кислородом, 78 % - азотом, 0,03-0,04% - углекислым газом. Лишь 1% приходится на долю вместе взятых инертных газов, озона, метана, закиси азота, йода и водяных паров. Каждый из химических компонентов атмосферы играет свою роль в жизнедеятельности организма. Кислород необходим для дыхания человека и животных, протекания различных процессов окисления, горения. Уровень его в атмосферном воздухе практически стабилен за счет постоянного восполнения убыли кислородом, образующимся в процессах фотосинтеза растений. Лишь с подъемом на высоту парциальное давление кислорода снижается, вызывая развитие гипоксии. Снижение концентрации кислорода до 11-13% приводит к развитию выраженной кислородной недостаточности, а при концентрации 7-8% наступает смерть.

Азот относится к индифферентным газам. Он не усваивается напрямую организмом человека и животных, но поступает в него опосредованно через растения, в которые попадает в виде нитратов, образовавшихся в процессе ассимиляции его и превращений, осуществляемых почвенными бактериями. В результате разложения органических соединений, горения древесины, угля и нефти вновь образуется свободный азот, поступающий в атмосферу.

Азот воздуха в обычных условиях играет роль разбавителя кислорода. Дыхание чистым кислородом губительно для человека, так как, являясь сильным окислителем, он оказывает выраженное токсическое действие, вызывает ожоги слизистых дыхательных путей и отек легких, что приводит к летальному исходу. При поступлении в организм азота под повышенным давлением наблюдается наркотическое действие. Повышение содержания азота в воздухе до 93% приводит к смерти вследствие гипоксии, развивающейся из-за снижения парциального давления кислорода.

Углекислый газ в естественных условиях поступает в воздух при дыхании человека и животных, в результате процессов гниения, брожения, горения, выделения с поверхности морей и океанов и др. Поддержание относительно постоянной концентрации углекислого газа обеспечивается параллельно протекающими процессами поглощения его растениями в процессе фотосинтеза, вымыванием осадками, растворением в воде морей и океанов, отложением в виде минеральных соединений.

Углекислота является одним из конечных продуктов, образующихся в процессах метаболизма в человеческом организме. Поступающий из тканей в кровь углекислый газ оказывает стимулирующее воздействие на дыхательный центр как непосредственно, так и в связи с изменением рН крови. При повышении парциального давления углекислоты в крови увеличивается сродство кислорода к гемоглобину. Однако при вдыхании воздуха, содержащего углекислый газ в больших концентрациях, выделение его организмом нарушается и развивается тканевая аноксия. Так, повышение концентрации углекислоты в воздухе до 4% сопровождается появлением головных болей, сердцебиения, повышением артериального давления, развитием психического возбуждения, а концентрация 8-10% является смертельной. Накопление углекислого газа в воздухе в таких концентрациях возможно в замкнутых пространствах, колодцах, сточных канавах.

При пребывании людей в жилых и общественных помещениях также происходит накопление углекислого газа, но в концентрациях, намного меньших, за счет выделения его при дыхании. В редких случаях содержание его достигает 0,5-1%. Однако даже некоторое, не являющееся токсическим, повышение концентрации углекислого газа в воздухе вызывает дискомфорт у человека, находящегося в помещении. Это связано с тем, что параллельно с углекислым газом в воздух выделяются и токсичные продукты метаболизма человеческого организма (индол, сероводород, аммиак, меркаптан и др.), а также уменьшается количество легких и увеличивается количество тяжелых ионов, повышается содержание пыли и микроорганизмов, ухудшается температурно-влажностный режим помещения. Так как изменения концентрации углекислого газа и других показателей качества воздушной среды нарастают синхронно, а определение углекислого газа отличается простотой, степень чистоты воздуха в общественных и жилых помещениях еще М.Петтенкофером и К.Флюгге было предложено определять по уровню углекислого газа в помещении. Содержание диоксида углерода в воздухе в воздухе жилых помещений и общественных учреждений не должно превышать 0,1%, а в лечебных учреждениях – 0,07%.

В небольшом количестве в атмосферном воздухе находится озон , представляющий собой трехатомные молекулы кислорода и являющийся сильным окислителем. Стратосферный озоновый слой, где сосредоточена основная масса озона, защищает людей и живую природу от коротковолнового ультрафиолетового и мягкого рентгеновского излучений, входящих в спектр солнечной радиации. В тропосфере концентрации озона обычно не превышают 30мкг/м 3 . Озон образуется под влиянием ультрафиолетовой радиации, при электрических разрядах во время грозы, испарении больших масс воды. В тропосферу он поступает также в результате движения воздушных масс и из стратосферы.

Виду высоких окислительных свойств озон, взаимодействуя с малейшими примесями, поступающими в воздух, распадается. Поэтому он практически не обнаруживается при значительной запыленности воздуха, а также в воздухе закрытых помещений. Зато повышенным содержанием озона отличаются мало загрязненные населенные места, высокогорье, берега водоемов, леса, особенно сосновые боры. В связи с этим раньше наличие озона в воздухе расценивали как показатель чистоты воздуха. Однако оказалось, что озон может образовываться и в результате фотохимических реакций при сильном загрязнении воздуха, и в такой ситуации повышенные его концентрации рассматриваются уже не как показатель чистоты воздуха, а как показатель его загрязнения. Озон в повышенных концентрациях (0,005мг/л и более) оказывает раздражающее действие на слизистые оболочки дыхательных путей и глаз, приводит к развитию воспалительных процессов в бронхолегочной ткани, может провоцировать развитие бронхоспатических реакций.

Солнечная радиация оказывает многообразное влияние на организм человека, в частности и терапевтическое. В настоящее время при некоторых заболеваниях применяют гелиотерапию - лечение прямыми солнечными лучами и аэротерапию - лечение рассеянными лучами.

Солнечный свет действует на организм всеми частями спектра. Однако наибольшее значение имеют ультрафиолетовые лучи. Видимые и инфракрасные лучи оказывают значительно меньшее действие.

Влияние лучей видимого участка спектра (с длиной волны 380-760 ммкм) осуществляется главным образом через орган зрения. Лучи, расположенные ближе к красной части спектра, действуют оживляюще и возбуждающе, желтые и зеленые лучи - успокаивающе, синие и фиолетовые - угнетающе. Красные лучи не раздражают кожу, поэтому при исключении других лучей, они могут способствовать уменьшению воспалительных явлений в коже.

Невидимые инфракрасные лучи (расположенные за красными лучами) солнечного спектра (с длиной волны 760-3400 ммкм) оказывают главным образом тепловое действие, в результате чего при длительном облучении возникают ожоги и общее перегревание.

При характеристике биологического действия ультрафиолетовых лучей различают: лучи с длиной волны от 400 до 320 ммкм, оказывающие слабо выраженное биологическое действие, лучи с длиной волны от 320 до 280 ммкм, оказывающие антирахитическое действие и действие на кожу; лучи с длиной волны от 280 ммкм и меньше, оказывающие разрушающее действие на тканевые белки. Эти лучи задерживаются в верхних слоях атмосферы, благодаря чему возможна органическая жизнь на земле.

Ультрафиолетовый участок солнечного спектра значительно ослабляется как самой атмосферой, так и разными примесями, находящимися в ней. Поэтому, как правило, все курорты, санатории, дома отдыха строятся вдали от больших городов.

Под влиянием ультрафиолетовых лучей в коже происходит расщепление клеточных белков, образование красящего вещества - меланина, превращение эргостерина в витамин D. Кроме того, ультрафиолетовые лучи обладают бактерицидными свойствами.

В обычных условиях на человека действуют не отдельные участки солнечного спектра, а весь комплекс лучей, входящих в его состав.

Солнечный свет повышает тонус центральной нервной системы, действуя непосредственно на нервные окончания, расположенные в коже. Кроме того, действие на нервную систему осуществляется и гуморальным путем (через кровь) - продуктами распада белков. Эти продукты, образующиеся под действием солнечного света, раздражая кроветворные органы, способствуют быстрой регенерации крови.

Солнечный свет активизирует ферменты, влияет на различные виды обмена веществ в нашем организме (белковый, жировой, углеводный).

У детей, лишенных воздействия солнечного света, развивается рахит. У взрослых возникает ломкость костей; при переломах кости плохо и медленно срастаются зубы легко разрушаются. Такое состояние называется «световым голоданием». Эти явления могут наблюдаться у шахтеров, у людей, живущих на Севере. Для профилактики таких нарушений рекомендуется систематическое облучение ультрафиолетовыми лучами в специальных фотариях, прием витамина D.

Солнечный свет оказывает полезное действие не только при непосредственном облучении организма. Он оздоровляет внешнюю среду, губительно действуя на микроорганизмы. Под влиянием прямых солнечных лучей микробы гибнут в период от нескольких минут до нескольких часов. Чтобы обеспечить максимальное использование солнечного света, необходимо размещать здания таким образом, чтобы в жилые помещения попадали прямые солнечные лучи.

Оконные стекла и оседающая на них пыль поглощают значительную часть ультрафиолетовых лучей. В настоящее время наша промышленность стала выпускать так называемые увиолевые стекла, которые пропускают ультрафиолетовые лучи.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Интенсивность солнечной радиации. Биологическое значение видимого участка спектра. Рациональное питание при умственном труде. Важность витаминов в рационе для лиц физического труда. Структура учреждений аптечной сети. Лицензирование аптечных учреждений.

    контрольная работа , добавлен 02.05.2010

    Определение понятия радиации. Соматические и генетические эффекты воздействия радиации на человека. Предельно допустимые дозы общего облучения. Защита живых организмов от радиационных излучений временем, расстоянием и при помощи специальных экранов.

    презентация , добавлен 14.04.2014

    Что такое биологическое действие ионизирующих излучений. Воздействие радионуклидов на живые ткани. Оценка вторичных повреждений тканей при воздействии радиации. Пути поступления радиоактивных веществ в организм. Уровни накопления радионуклидов в органах.

    доклад , добавлен 25.11.2009

    Естественные источники радиации. Космические лучи. Земная радиация. Внутреннее облучение. Радон. Источники, использующиеся в медицине. Ядерные взрывы. Атомная энергетика. Профессиональное облучение. Действие радиации на человека.

    лекция , добавлен 19.03.2007

    Сущность естественного фона ионизирующих излучений. Характеристика космической и земной радиации, особенности их воздействия на организм человека. Признаки, этапы и формы лучевой болезни. Основы охраны здоровья от вредного действия ионизирующей радиации.

    курсовая работа , добавлен 11.09.2010

    Краткая историческая справка открытия радиации. Ионизация вещества альфа-частицей. Естественные источники радиации. Космические лучи, внутреннее облучение. Негативное воздействие радона на организм человека. Использование радиоактивности в мирных целях.

    реферат , добавлен 25.10.2015

    Альфа, бета и гамма излучение. Радиочувствительность различных органов и тканей. Воздействие различных доз облучения на организм. Прямое и косвенное действие радиации. Генетические, соматические детерминированные и стохастические эффекты радиации.

    презентация , добавлен 02.04.2012

4.1. Характеристика солнечного излучения. Световой климат. Вся органическая жизнь на земле обязана своим существованием солнечной радиации, которая является источником энергии, тепла и света на земном шаре. Солнцем испускаются корпускулярные и электромагнитные излучения. Корпускулярные излучения называются солнечным ветром , они представлены электронами, протонами, ядрами гелия и другими частицами . Электромагнитный спектр солнечного излучения весьма широк, в него входят излучения диапазона радиочастот, инфракрасное, видимое, ультрафиолетовое, гамма - и рентгеновское излучения. Солнечное электромагнитное излучение распространяется со скоростью 300000 км/сек и достигает Земли за 8 минут. Частицы же солнечного ветра имеют меньшую скорость – 300 км/сек, в связи с чем достигают Земли через несколько суток. Скорость и интенсивность излучений резко возрастают в периоды солнечной активности. Проявлениями солнечной активности являются солнечные пятна и солнечные вспышки. Солнечные пятна представляют собой гигантские электромагниты с поперечником в несколько тысяч километров и напряженностью магнитного поля в тысячи раз выше напряженности магнитного поля Земли. Солнечные вспышки являются отражением взрывов, происходящих на Солнце. Мощность вспышек сравнима с мощностью взрыва тысяч термоядерных бомб. Во время вспышек усиливается выброс коротковолнового ионизирующего излучения и высокоэнергетических частиц, скорость которых может достигать 1000-2000 км/сек, вследствие чего до Земли они доходят уже за 2-3 суток.

На пути к Земле солнечный ветер взаимодействует в основном с геомагнитным полем Земли, а электромагнитное излучение – с нижними слоями стратосферы и тропосферой. Магнитное поле действует как броня и не пропускает заряженные частицы близко к Земле. Электромагнитное же излучение вступает в химическое и физическое взаимодействие с компонентами земной атмосферы. При этом происходит ослабление интенсивности солнечного излучения, поглощение озоновым слоем коротковолнового и формирование длинноволнового излучения, за счет неравномерного нагрева земной поверхности и атмосферы осуществляются циркуляция воздушных масс и другие процессы, определяющие погодные и климатические условия. Поверхности Земли достигают лишь средне- и длинноволновое ультрафиолетовое, видимое и коротковолновое инфракрасное излучения.

Количество солнечного излучения, доходящее до земной поверхности в той или иной местности, называется световым климатом . Световой климат обусловливается как природными (географическая широта, местности, сезон года, время суток, рельеф местности, климат, погода, отражательная способность земной поверхности) так и антропогенными факторами (загрязнение атмосферы и др.).



Мощность общего потока солнечного излучения на поверхности Земли зависит от толщины слоя атмосферы, через которую она проходит. Толщина этого слоя определяется высотой солнцестояния над горизонтом и высотой местности над уровнем моря. Чем выше Солнце над горизонтом, тем меньше толщина атмосферы, через которую проходят солнечные лучи. Так, если масса атмосферы (толщина слоя воздуха на уровне моря) при высоте стояния Солнца 60° равна в условных единицах 1,1, то при заходе и восходе Солнца – 35,4, т.е. косые лучи проходят больший путь до земной поверхности, чем прямые. Уменьшением толщины атмосферы объясняется и возрастание интенсивности солнечной радиации по мере увеличения высоты местности.

Высота солнцестояния зависит от географической широты, времени года и суток. С увеличением географической широты, т.е. с удалением от экватора, высота солнцестояния уменьшается. Снижается она и в зимние месяцы. Изменение высоты солнцестояния отражается не только на количестве, но и качественном составе солнечного излучения. Так, с уменьшением высоты солнцестояния снижается доля ультрафиолетового и видимого излучения, увеличивается доля инфракрасного. Если в зените (90º) доля ультрафиолетового излучения составляет 4%, а видимого – 46%, то у горизонта ультрафиолетовое излучение практически отсутствует, а доля видимого снижается до 28%.

В атмосфере постоянно происходят процессы поглощения, рассеивания и отражения солнечного света. Поэтому общее суммарное излучение , достигающее земной поверхности, складывается из прямого, исходящего непосредственного от Солнца, рассеянного небосводом и отраженного от поверхности различных объектов. Чем больше высота солнцестояния, тем больше величина прямого излучения. Облака, отражая прямое солнечное излучение, увеличивают его рассеяние, в связи с чем интенсивность солнечного излучения может снижаться на 47-56%. В загрязненной атмосфере солнечное излучение поглощается пылью, газами, аэрозолями, дымом, поступающими в воздух с промышленными выбросами, выбросами автотранспорта, отопительных установок и др. Значительно снижается суммарное солнечное излучение в туманную и влажную погоду.

Особенно сказываются процессы рассеяния и отражения солнечного излучения на интенсивности ультрафиолетовой составляющей, доля которой в солнечном спектре и так невелика – от 0,6 до 10% на уровне земной поверхности. Причем, большую часть из них – до 70-75% составляет рассеянное, а не прямое, излучение. В высоких широтах (выше 57,5°) наблюдается дефицит ультрафиолетового излучения: в течение ноября - февраля средневолновое ультрафиолетовое излучение практически отсутствует, а в октябре – марте интенсивность его весьма мала. В районах, расположенных между 57,5° и 42,5° южных и северных широт, большей частью наблюдается ультрафиолетовый комфорт, в зонах ниже 42,5° - избыточное ультрафиолетовое излучение. Более высока интенсивность ультрафиолетового излучения и в горах, где на каждые 1000 м высоты над уровнем моря она возрастает на 15%.

4.2.Влияние солнечной радиации на организм человека. Солнечная радиация оказывает выраженное биологическое действие. Под действием энергии солнечного излучения в организме происходят разнообразные биохимические и физиологические превращения, совокупность которых называется фотобиологическими процессами. В основе их лежат фотохимические реакции: фотоионизация, фотовосстановление и окисление, фотодиссоциация и др.

Характер фотобиологических процессов зависит от энергии излучения. Благодаря энергии солнечного излучения стимулируется обмен веществ, синтез углеводов, жиров, белков, витаминов и пигментов, в частности, в растениях – синтез хлорофилла и др. Важную роль играют составляющие солнечного спектра в обеспечении процесса зрения у животных организмов, регуляции роста и развития растений, связанных с такими их свойствами, как фототаксис, фототропизм, и фотопериодизм. Вместе с тем, излучения, обладающие значительной энергией, оказывают повреждающее действие на организм.

Энергия солнечного излучения определяется длиной его волны: чем меньше длина, тем больше энергия. Среди излучений солнечного спектра, достигающих земной поверхности, наибольшей длиной (760-4000 нм) обладает инфракрасное излучение, затем следует видимое излучение - 400-760 нм. Наименьшую длину волны имеет ультрафиолетовое излучение - 290-400 нм, поэтому кванты этого излучения несут наибольший запас энергии. В связи с разным уровнем энергии, передаваемым клеткам, инфракрасное, видимое и ультрафиолетовое излучения оказывают неоднозначное воздействие на организм человека.

Гигиеническое значение инфракрасной радиации . Основная часть электромагнитного спектра солнечной радиации представлена инфракрасным излучением. На земной поверхности при высоте солнцестояния 60° она составляет 53%, у горизонта – 72%. Инфракрасные лучи, обладающие большой длиной волны (4000-15000 нм), задерживаются при прохождении через атмосферу, поверхности же Земли достигают более короткие лучи - с длиной волны 760- 4000нм.

Главный эффект инфракрасного излучения – тепловой. Именно этот эффект определяет важнейшую роль инфракрасного излучения в процессах планетарного масштаба. Благодаря энергии инфракрасного излучения происходит нагревание земной поверхности, неравномерность которого обусловливает движение воздушных и водных масс на Земле и формирование погодных и климатических условий.

Таким образом, влиянием климата и погоды в определенной степени реализуется опосредованное воздействие инфракрасного излучения на организм. При прямом действии инфракрасное солнечное излучение вызывает поверхностное или глубинное прогревание тканей. Глубоко (до 4-5 см) проникает в ткани коротковолновое инфракрасное излучение (760 -1500 нм), тогда как лучи с длиной волны 1500-4000 нм поглощаются преимущественно поверхностными слоями кожи, богатыми терморецепторами, в связи с чем при действии длинноволнового ИК-излучения более выражено ощущение жжения. Несмотря на малую энергию фотонов, ИК-излучение оказывает, хотя и слабое, фотохимическое действие , проявляющееся в некотором усилении обмена веществ, ускорении ферментативных и иммунобиологических процессов, усилении биологического действия ультрафиолетовых лучей. За счет нагрева тканей, действия активных соединений, образующихся при фотохимических реакциях, а также раздражения нервных рецепторов кожи при действии ИК-излучения усиливается кровоток, ослабляется тонус мышц и сосудов, нормализуются вегетативные реакции, вследствие чего проявляется болеутоляющий и противовоспалительный эффект . Эти свойства ИК-излучения широко используются в физиотерапевтической практике, где используются его искусственные источники – лампы соллюкс и Минина.

При длительном и интенсивном воздействии солнечного ИК-излучения может наблюдаться перегревание организма различной степени выраженности, в тяжелых случаях – тепловой или солнечный удар. Однако наиболее мощному воздействию ИК-излучения люди подвергаются в производственных условиях. В горячих цехах интенсивность ИК-излучения может достигать 12,6-25,2 МДж/(м 2 ч), тогда как интенсивность солнечного теплового излучения в умеренных широтах, например, не превышает 3,77 МДж/(м 2 ·ч). Длительное воздействие как производственного, так и солнечного ИК-излучения, помимо перегревания, может привести к развитию тепловой катаракты вследствие поглощения хрусталиком тепловых лучей и затрудненного отвода тепла из-за плохой васкуляризации.

Гигиеническое значение видимого света. Видимые лучи в спектре солнечного электромагнитного излучения составляют от 28% при стоянии солнца над горизонтом до 46% при стоянии солнца в зените, при голубом небе – 65 %. Дневная освещенность на открытой местности зависит от многих факторов: высоты солнцестояния, погодных и климатических условий, чистоты воздуха. Диапазон значений освещенности в связи с этими условиями широк, он колеблется от 65000 до 1000 лк и менее.

Видимое излучение обладает более выраженным, чем инфракрасные лучи, фотохимическим действием, которое проявляется большей частью в присутствии фотосенсибилизаторов. Фотосенсибилизаторами называются вещества, которые, вбирая кванты лучистой энергии, претерпевают кратковременные изменения, а, отдавая окружающим тканям эту энергию в концентрированном виде, вновь восстанавливают свои свойства. Одними из таких фотосенсибилизаторов являются зрительные пигменты сетчатки, при воздействии на которые видимого излучения обеспечивается работа зрительного анализатора . При этом весьма важной является способность видимого излучения обусловливать не монохроматичную зрительную информацию, а представленную в различных цветах, что связано с присутствием в его спектре излучений различного цвета: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового. Цветовая гамма, создаваемая солнечным светом, оказывает различное воздействие на организм, и, прежде всего, на психоэмоциональную сферу: синий и фиолетовый цвета угнетают, голубой успокаивает, зеленый индифферентен, ярко-желтый раздражает, красный – возбуждает. Наиболее оптимальными для работы зрительного анализатора считаются волны зеленого и желтого диапазонов спектра видимого света.

Действуя рефлекторно через зрительный анализатор и, в некоторой степени, через периферические нервные окончания, солнечный свет оказывает общебиологическое действие . Он стимулирует обменные процессы в организме, повышает активность коры больших полушарий головного мозга, усиливает секрецию гипофиза, в связи с чем повышается жизненный тонус человека, улучшается его самочувствие и эмоциональное состояние. Отмечено, что видимое излучение играет определенную роль и в процессах роста и развития организма.

Свет является главным синхронизатором биологических ритмов у человека: суточных, сезонных, годовых и др. Рассогласование между природным (свет) и техногенными (часы, радио, телевидение, искусственное освещение, график и место работы и др.) регуляторами биоритмов приводит к нарушению режима сна и бодрствования, ухудшению самочувствия, развитию депрессий и т.д.).

Видимое излучение, особенно в диапазоне волн, граничащих с инфракрасным излучением, оказывает тепловое воздействие , доля которого составляет около половины тепловой энергии, передаваемой солнечным излучением. Коротковолновая фиолетовая часть спектра, граничащая с длинноволновым ультрафиолетовым излучением, вызывает те же эффекты, что и последнее – эритемный, загарный и слабо бактерицидный .

Особое гигиеническое значение видимого света для работы органа зрения, за счет которого организм получает до 80 % информации о внешнем мире, требует создания достаточного уровня естественного освещения в помещениях, как за счет прямого солнечного облучения (инсоляции), так и за счет рассеянного и отраженного (см. главу VII).

Гигиеническое значение ультрафиолетового излучения. Ультрафиолетовое излучение обладает значительно большей энергией, чем инфракрасное и видимое. Но и спектр самого излучения неоднороден по энергии фотонов, вследствие чего в нем выделяют 3 области, отличающиеся по длине волны и биологической активности: область А- длинноволновое излучение (ближнее ультрафиолетовое, эритемно-загарное) с длиной волны 400-320нм; область В – средневолновое излучение (витаминообразующее) с длиной волны 320-280 нм; область С – коротковолновое излучение (далекое ультрафиолетовое, бактерицидное) с длиной волны 280-210 нм. До земной поверхности, как отмечалось выше, доходят только длинно- и средневолновые ультрафиолетовые лучи. Коротковолновое ультрафиолетовое излучение обычно получают с помощью искусственных источников.

Ультрафиолетовые излучения могут оказывать полезное (биогенное) действие и повреждающее (абиогенное ). Характер действия зависит от длины волны излучения и его дозы. Биогенный эффект наблюдается при действии малых, не превышающих оптимального уровня, доз длинно- и средневолнового излучения. Абиогенные эффекты характерны, прежде всего, для коротковолнового УФ-излучения, энергия которого намного превышает энергию УФ-лучей других диапазонов. Однако абиогенное действие могут оказывать и длинно-, и средневолновые лучи, если получаемая доза их намного превышает пороговую эритемную.

Биогенное действие проявляется в виде общестимулирующего, эритемно-загарного и антирахитического (вит. Д –образующего) эффектов. В механизме действия ультрафиолетового излучения выделяют несколько компонентов: биофизический, гуморальный и нервно-рефлекторный. Гуморальный компонент обусловлен образованием в результате фотохимических реакций биологически активных соединений (гистамина и гистаминоподобных веществ, ацетилхолина, серотонина и др.), которые стимулируют обменные процессы в организме. Биофизический компонент связан с изменением ионного состава и коллоидного состояния белков клеток вследствие фотоэлектрического действия УФ-излучения. И, наконец, нервно-рефлекторный компонент характеризуется стимуляцией многих функций вследствие раздражения нервных окончаний в коже образующимися гистамином и гистаминоподобными веществами и другими соединениями.

Благодаря сочетанному гуморальному, биофизическому и нервно-рефлекторному воздействиям проявляется выраженный общестимулирующий эффект УФ-излучения. В частности, повышается активность ферментов тканевого дыхания, активируются процессы метаболизма белков, жиров, углеводов, минеральных веществ, стимулируются кроветворение, рост клеток, регенерация тканей. Весьма важным является также повышение резистентности организма к инфекциям, что объясняется усилением фагоцитарной активности лейкоцитов, бактерицидных свойств кожи и крови, стимуляцией синтеза антител. Следует отметить, что под действием УФ-излучения повышается устойчивость не только к инфекциям, но и к действию ионизирующих излучений, токсических и канцерогенных агентов, фиброгенных пылей и др.

Общестимулирующим действием обладают как длинно- , так и средневолновые УФ-лучи, но наиболее выражено оно у средневолнового УФ-излучения. Кроме общебиологического действия для каждого диапазона УФ-излучения характерны и свои специфические эффекты. Так, длинноволновое УФ-излучение оказывает преимущественно эритемно-загарное действие, а средневолновое – стимулирует синтез вит.Д в коже и обладает слабым бактерицидным действием. Ультрафиолетовая эритема развивается через 1-3 часа после облучения, а иногда и раньше. Ее отличают четкие контуры, а также последующее образование пигмента меланина в коже (загар). Загар, а также утолщение эпидермиса, развивающееся под влиянием УФ-лучей, являются защитной реакцией организма на действие солнечной радиации. Быстрое образование загара – один из показателей хорошей реактивности организма.

Средневолновые УФ-лучи обладают антирахитическим действием, так как способствуют образованию в коже витаминов Д 2 , Д 3 . Д 4 путем изомеризации в фотохимических реакциях провитаминов Д. Наибольшим антирахитическим действием отличаются лучи с длиной волны 313 ммк. При недостаточном облучении УФ-лучами процессы образования вит. Д замедляются, вследствие чего нарушается фосфорно-кальциевый обмен и процессы остеобразования. У детей развиваются рахит, тетания, замедляются процессы роста и развития. У взрослых могут наблюдаться явления остеопороза, ослабевает связочный аппарат, плохо срастаются кости при переломах, эмаль зубов становится хрупкой и быстро разрушается.

Таким образом, наиболее ценными в биологическом отношении являются средневолновые УФ-лучи, так как именно они обладают выраженным общестимулирующим, антирахитическим и закаливающим действием, укрепляют иммунный статус организма, способствуют хорошей регенерации тканей, стимулируют процессы роста и развития. Немаловажное значение имеет также вызываемая ими активация процессов высшей нервной деятельности, за счет которой повышается умственная работоспособность, предупреждается раннее развитие утомляемости. Описан положительный эффект УФ-облучения у больных неосложненными формами ишемической болезни сердца и гипертонической болезни.

Современная среда характеризуется повышенным риском развития ультрафиолетовой недостаточности (солнечного голодания) , которая обусловливается не только климатическими особенностями региона, но и условиями быта и трудовой деятельности людей, загрязнением воздуха, нерациональной планировкой жилых и общественных зданий, преобладанием туманных и пасмурных дней, и т.д. Наиболее часто характерные для УФ-недостаточности проявления наблюдаются у проживающих в северных широтах, рабочих горнорудной, угольной промышленности, метростроителей, детей, учащихся школ и вузов, находящихся большую часть дня в помещении. Для профилактики светового голодания планировка и застройка населенных пунктов должна осуществляться так, чтобы обеспечить не менее чем 3-х часовую инсоляцию окон жилых помещений (см. главу VII). Оконные стекла должны быть прозрачными для ультрафиолетового излучения, что не принимается во внимание при современном строительстве, когда окна большинства общественных учреждений застекляются тонированными стеклами. Должны проводиться активные мероприятия по предупреждению загрязнения атмосферного воздуха пылью, дымом, копотью, химическими веществами.

Наряду с указанным для профилактики светового голодания проводится УФ-облучение искусственными селективными и интегральными источниками УФ-излучения. Селективные источники (эритемные люминесцентные лампы - ЭУВ) дают излучения, максимум которых сосредоточен в одной узкой части УФ-спектра. Спектр излучения интегральных источников (прямые ртутно-кварцевые лампы - ПРК) представлен излучениями всех диапазонов УФ-спектра и видимого спектра. Для облучения используются светооблучательные установки длительного и кратковременного действия. В светооблучательных установках длительного действия лампы обычно встроены в светильники помещений вместе с обычными люминесцентными лампами, используемыми для освещения. Профилактическая доза при этом получается в течение 3-6 часов пребывания в помещении. При кратковременном облучении, которое проводится в специальных помещениях – фотариях , профилактическая доза получается за несколько минут. Особенно важным является восполнение светового голодания для детей, так как их организм наиболее чувствителен к недостатку УФ-излучения. При проведении УФ-облучения обязательно его дозирование и четкий контроль за ним. Вначале определяют биологическую (эритемную) дозу облучения с помощью биодозиметра И.Ф.Горбачева. Она равна минимальному времени облучения незагорелой кожи на предплечье или животе, после которого через 8-14 часов появляется минимально выраженная эритема. Ежедневная суточная доза при облучении, проводимом с профилактической целью, составляет 1/8 -3/4 биодозы. Обычно облучение в установках кратковременного действия начинают с 1/4 или 1/8 биодозы в зависимости от состояния человека и, прибавляя ежедневно или через день такими же долями, доводят до облучения в дозе, равной 1,5 биодозам, после чего делают перерывы на 2-3 месяца.

Светооблучательные установки длительного действия устанавливают, прежде всего в детских садах, детдомах, яслях, школах, больницах, санаториях, домах отдыха, общежитиях, производственных помещениях, лишенных естественного света, спортивных залах. В этих помещениях суточная профилактическая доза получается в течение целого дня.

Коротковолновые УФ-лучи обладают выраженным бактерицидным действием, а также оказывают вредное воздействие на организм человека. Абиогенное действие проявляют и длинно- и средневолновые лучи, если интенсивность облучения высока (5 и более минимальных эритемных биодоз). К абиогенным эффектам ультрафиолетового излучения относятся ожоги, фотодерматиты, эрозии, язвы, кератоконъюнктивиты, кератиты, катаракта, птеригий, солнечный эластоз, фотосенсибилизация, обострение хронических заболеваний внутренних органов, канцерогенное и мутагенное действие. Канцерогенное действие в основном характерно для излучения с длиной волны 280-340 нм, но оно реализуется лишь при длительном воздействии очень высоких доз (свыше 40 биодоз) солнечного облучения или излучения от искусственных источников. Вместе с тем, прогнозируется увеличение заболеваемости раком кожи вследствие увеличения количества и размеров озоновых дыр.

Абиогенные эффекты могут быть обусловлены не только солнечным излучением, но и различными искусственными источниками ультрафиолетового излучения: бактерицидными облучателями, электросварочными аппаратами, плазменной горелкой, фотоэлектрическим сканнером, лазерами, флюоресцентными панелями и др. Для профилактики неблагоприятного воздействия солнечного УФ-излучения работы на открытом воздухе не должны проводиться в период с 10 до 14 часов или же работа должна проводиться с ограничением времени пребывания на солнце и в солнцезащитная одежде с использованием солнцезащитных средств. При работе с искусственными источниками обязательно нормирование УФ-излучения, использование защитных средств, соответствующей сигнализации.

5. Природный химический состав воздуха и его гигиеническое значение.

Природный химический состав атмосферного воздуха, как известно, на 20,95% представлен кислородом, 78 % - азотом, 0,03-0,04% - углекислым газом. Лишь 1% приходится на долю вместе взятых инертных газов, озона, метана, закиси азота, йода и водяных паров. Каждый из химических компонентов атмосферы играет свою роль в жизнедеятельности организма. Кислород необходим для дыхания человека и животных, протекания различных процессов окисления, горения. Уровень его в атмосферном воздухе практически стабилен за счет постоянного восполнения убыли кислородом, образующимся в процессах фотосинтеза растений. Лишь с подъемом на высоту парциальное давление кислорода снижается, вызывая развитие гипоксии. Снижение концентрации кислорода до 11-13% приводит к развитию выраженной кислородной недостаточности, а при концентрации 7-8% наступает смерть.

Азот относится к индифферентным газам. Он не усваивается напрямую организмом человека и животных, но поступает в него опосредованно через растения, в которые попадает в виде нитратов, образовавшихся в процессе ассимиляции его и превращений, осуществляемых почвенными бактериями. В результате разложения органических соединений, горения древесины, угля и нефти вновь образуется свободный азот, поступающий в атмосферу.

Азот воздуха в обычных условиях играет роль разбавителя кислорода. Дыхание чистым кислородом губительно для человека, так как, являясь сильным окислителем, он оказывает выраженное токсическое действие, вызывает ожоги слизистых дыхательных путей и отек легких, что приводит к летальному исходу. При поступлении в организм азота под повышенным давлением наблюдается наркотическое действие. Повышение содержания азота в воздухе до 93% приводит к смерти вследствие гипоксии, развивающейся из-за снижения парциального давления кислорода.

Углекислый газ в естественных условиях поступает в воздух при дыхании человека и животных, в результате процессов гниения, брожения, горения, выделения с поверхности морей и океанов и др. Поддержание относительно постоянной концентрации углекислого газа обеспечивается параллельно протекающими процессами поглощения его растениями в процессе фотосинтеза, вымыванием осадками, растворением в воде морей и океанов, отложением в виде минеральных соединений.

Углекислота является одним из конечных продуктов, образующихся в процессах метаболизма в человеческом организме. Поступающий из тканей в кровь углекислый газ оказывает стимулирующее воздействие на дыхательный центр как непосредственно, так и в связи с изменением рН крови. При повышении парциального давления углекислоты в крови увеличивается сродство кислорода к гемоглобину. Однако при вдыхании воздуха, содержащего углекислый газ в больших концентрациях, выделение его организмом нарушается и развивается тканевая аноксия. Так, повышение концентрации углекислоты в воздухе до 4% сопровождается появлением головных болей, сердцебиения, повышением артериального давления, развитием психического возбуждения, а концентрация 8-10% является смертельной. Накопление углекислого газа в воздухе в таких концентрациях возможно в замкнутых пространствах, колодцах, сточных канавах.

При пребывании людей в жилых и общественных помещениях также происходит накопление углекислого газа, но в концентрациях, намного меньших, за счет выделения его при дыхании. В редких случаях содержание его достигает 0,5-1%. Однако даже некоторое, не являющееся токсическим, повышение концентрации углекислого газа в воздухе вызывает дискомфорт у человека, находящегося в помещении. Это связано с тем, что параллельно с углекислым газом в воздух выделяются и токсичные продукты метаболизма человеческого организма (индол, сероводород, аммиак, меркаптан и др.), а также уменьшается количество легких и увеличивается количество тяжелых ионов, повышается содержание пыли и микроорганизмов, ухудшается температурно-влажностный режим помещения. Так как изменения концентрации углекислого газа и других показателей качества воздушной среды нарастают синхронно, а определение углекислого газа отличается простотой, степень чистоты воздуха в общественных и жилых помещениях еще М.Петтенкофером и К.Флюгге было предложено определять по уровню углекислого газа в помещении. Содержание диоксида углерода в воздухе в воздухе жилых помещений и общественных учреждений не должно превышать 0,1%, а в лечебных учреждениях – 0,07%.

В небольшом количестве в атмосферном воздухе находится озон , представляющий собой трехатомные молекулы кислорода и являющийся сильным окислителем. Стратосферный озоновый слой, где сосредоточена основная масса озона, защищает людей и живую природу от коротковолнового ультрафиолетового и мягкого рентгеновского излучений, входящих в спектр солнечной радиации. В тропосфере концентрации озона обычно не превышают 30мкг/м 3 . Озон образуется под влиянием ультрафиолетовой радиации, при электрических разрядах во время грозы, испарении больших масс воды. В тропосферу он поступает также в результате движения воздушных масс и из стратосферы.

Виду высоких окислительных свойств озон, взаимодействуя с малейшими примесями, поступающими в воздух, распадается. Поэтому он практически не обнаруживается при значительной запыленности воздуха, а также в воздухе закрытых помещений. Зато повышенным содержанием озона отличаются мало загрязненные населенные места, высокогорье, берега водоемов, леса, особенно сосновые боры. В связи с этим раньше наличие озона в воздухе расценивали как показатель чистоты воздуха. Однако оказалось, что озон может образовываться и в результате фотохимических реакций при сильном загрязнении воздуха, и в такой ситуации повышенные его концентрации рассматриваются уже не как показатель чистоты воздуха, а как показатель его загрязнения. Озон в повышенных концентрациях (0,005мг/л и более) оказывает раздражающее действие на слизистые оболочки дыхательных путей и глаз, приводит к развитию воспалительных процессов в бронхолегочной ткани, может провоцировать развитие бронхоспатических реакций.

7850 0

Солнечная радиация. Солнечная радиация — важнейший фактор существования жизни на Земле. С физической точки зрения солнечная энергия представляет собой поток электромагнитных излучений с различной длиной волны.

Спектральный состав излучения солнца колеблется в широком диапазоне — от длинных до ультракоротких волн.

В гигиеническом отношении особый интерес представляет оптическая часть солнечного спектра, которая разделяется на три диапазона: инфракрасные лучи с длиной волн от 28 000 до 760 нм, видимую часть спектра — от 760 до 400 нм и ультрафиолетовую часть — от 400 до 10 нм.

Установлено, что солнечная радиация оказывает мощное биологическое действие: стимулирует физиологические процессы в организме, влияет на обмен веществ, общий тонус, улучшает самочувствие человека, повышает его работоспособность

По биологической активности инфракрасные луни делятся на коротковолновые — с диапазоном волн от 760 до 1400 нм и длинноволновые — с диапазоном волн от 1400 до 28 000 нм. Инфракрасное излучение оказывает на организм тепловое воздействие, которое в значительной мере определяется поглощением лучей кожей. Для лечения некоторых воспалительных заболеваний используют коротковолновое инфракрасное излучение, которое обеспечивает прогревание глубоких тканей без субъективного ощущения жжения кожи. Напротив, длинноволновая инфракрасная радиация поглощается поверхностными слоями кожи, где сосредоточены терморецепторы, чувство жжения при этом выраженно.

Наиболее интенсивное неблагоприятное воздействие инфракрасной радиации наблюдается в производственных условиях. У рабочих горячих цехов, стеклодувов и представителей других профессий, имеющих контакт с мощными потоками инфракрасной радиации, понижается электрическая чувствительность глаза, увеличивается скрытый период зрительной реакции, ослабляется условно-рефлекторная реакция сосудов.

Инфракрасные лучи способны проходить через мозговую оболочку и воздействовать на рецепторы мозга. Вследствие нагрева мозговых оболочек коры больших полушарий возможно развитие солнечного удара. У пострадавших отмечают сильное возбуждение, потерю сознания, судороги и ряд других изменений состояния. Под воздействием инфракрасной радиации возможны поражение органов зрения в виде катаракты, изменения иммунологической реактивности организма и др.

Интенсивность видимого спектра солнечной радиации у поверхности Земли зависит от погоды, высоты стояния Солнца над горизонтом, запыленности воздуха и ряда других факторов.

Видимый свет оказывает общебиологическое действие. Это проявляется не только в специфическом влиянии на функции зрения, но и в определенном воздействии на функциональное состояние центральной нервной системы и через нее — на все органы и системы. Организм реагирует не только на ту или иную освещенность, но и на весь спектр солнечного света (табл. 1).

Оптимальные условия для зрительного аппарата создают волны зеленой и желтой зоны спектра, лучи оранжево-красной части спектра могут вызывать возбуждение и усиливать чувство тепла. Угнетающим действием, усиливающим тормозные процессы в ЦНС, обладают сине-фиолетовые лучи солнечного спектра.

Таблица 1. Спектральный состав видимой части солнечной радиации


Поглощение ультрафиолетового излучения клетками ткани приводит к расщеплению молекул белка и нуклеиновых кислот. Образовавшиеся продукты (гистамин, витамин D и др.) являются биологически активными веществами. В нуклеиновых кислотах образуются атипичные молекулярные связи, нарушающие кодирующие свойства ДНК.

Значительные изменения претерпевают ароматические аминокислоты: фенилаланин, тирозин и триптофан. Выраженной деструкции подвергается цистеин. Инактивируются некоторые клеточные энзимы.

По результату конечного действия на организм УФ-излучение делится на три области: УФ-С — от 200 до 280 нм. УФ-В — от 280 до 315 нм и УФ-А — от 315 до 400 нм. Наибольшей биологической активностью обладает УФ-В.

Наиболее характерная реакция организма на воздействие УФ-излучения с длиной волн 315-400 нм — развитие пигментации, которая наступает без предварительного покраснения кожи. Специфической реакцией организма на действие УФ-радиации является развитие эритемы (покраснения). Ультрафиолетовая эритема имеет ряд отличий от инфракрасной.

Так, ультрафиолетовой эритеме свойственны строго очерченные контуры, ограничивающие участки воздействия ультрафиолетовых лучей, она возникает через некоторое время после облучения и, как правило, переходит в загар. Инфракрасная эритема возникает тотчас после теплового воздействия, имеет размытые края и не переходит в загар. В настоящее время имеются факты, свидетельствующие о значительной роли центральной нервной системы в развитии ультрафиолетовой эритемы. Так, при нарушении проводимости периферических нервов или после введения новокаина эритема на данном участке кожи слабая или совсем отсутствует.

Ультрафиолетовая радиация в диапазоне волн от 315 до 280 нм оказывает специфическое антирахитическое действие, что проявляется в фотохимических реакциях ультрафиолетовой радиации этого диапазона в синтезе витамина D. При недостаточном облучении ультрафиолетовыми лучами антирахитического спектра страдают фосфорно-кальциевый обмен, нервная система, паренхиматозные органы, система кроветворения, снижаются окислительно-восстановительные процессы, нарушается стойкость капилляров, снижаются работоспособность и сопротивляемость простудным заболеваниям.

У детей возникает рахит с определенными клиническими симптомами, у взрослых нарушается фосфорно-кальциевый обмен на почве гиповитаминоза D, что проявляется в плохом срастании костей при переломах, ослаблении связочного аппарата суставов, быстром разрушении эмали зубов.

Ультрафиолетовая радиация антирахитического спектра легко поглощается и рассеивается в запыленном атмосферном воздухе. В связи с этим жители промышленных городов, где атмосферный воздух загрязнен различными выбросами, испытывают «ультрафиолетовое голодание». Недостаточность естественного ультрафиолетового излучения испытывают также жители Крайнего Севера, рабочие угольной и горнорудной промышленности, лица, работающие в темных помещениях, и т.д. Для восполнения естественного солнечного облучения этих контингентов людей дополнительно облучают искусственными источниками ультрафиолетовой радиации либо в специальных фотариях, либо путем комбинации осветительных ламп с лампами, дающими излучение в спектре, близком к естественному ультрафиолетовому излучению.

Бактерицидное действие УФ-радиации (лучей с длиной волн от 180 до 275 нм) используется в медицине при санации воздушной среды операционных, асептических блоках аптек, микробиологических блоках и т.д. Бактерицидные лампы с указанным выше спектром применяются для обеззараживания молока, дрожжей, безалкогольных напитков, лекарств и др.

Электрическое состояние воздушной среды. Под собирательным термином «атмосферное электричество» обычно понимают целый комплекс явлений, включающий ионизацию воздуха, электрические и магнитные поля атмосферы.

Под ионизацией воздуха понимают распад молекул и атомов с образованием аэроионов. В результате происходит отрыв электрона от молекулы и она становится положительно заряженной, а оторвавшийся свободный электрон, присоединившись к одной из нейтральных молекул, сообщает ей отрицательный заряд. Именно поэтому в атмосфере образуется пара противоположно заряженных частиц — отрицательные и положительные ионы.

Физическая сущность ионизации воздуха заключается в действии на молекулы воздуха различных ионизирующих факторов (радиоактивных элементов, космического, ультрафиолетового излучения, электрических, грозовых разрядов, баллоэлектрического эффекта, аэроионизаторов).

Молекулярные комплексы (10-15 молекул) с одним элементарным зарядом называют нормальными, или легкими, ионами. Они имеют размеры 10-8 см и обладают сравнительно большой подвижностью. Сталкиваясь с постоянно присутствующими в атмосфере более крупными частицами, легкие ионы оседают на них и сообщают им свой заряд. Возникают вторичные ионы, включающие средние (10-6 см) и тяжелые (10-5см) аэроионы.

Ионный состав воздуха — важный гигиенический показатель. Умеренное повышение концентрации легких ионов (особенно с преобладанием отрицательного знака) может рассматриваться как положительное явление. Воздействие на человека легких отрицательных аэроионов характеризуется благоприятным биологическим действием. Наоборот, чрезмерно высокие концентрации ионов положительного знака, особенно тяжелых, свидетельствуют о низком гигиеническом качестве воздуха.

Отношением числа тяжелых ионов к числу легких ионов определяется ионизационный режим воздушной среды. Для характеристики ионизации воздуха используется коэффициент униполярности, показывающий отношение числа положительных ионов к числу отрицательных. Чем более загрязнен воздух, тем выше этот коэффициент.

Количество легких ионов зависит от географических, геологических условий, погоды, уровня радиоактивности окружающей среды, загрязнения атмосферного воздуха. С увеличением влажности воздуха возрастает количество тяжелых ионов из-за рекомбинации ионов с каплями влаги. Понижение атмосферного давления способствует выходу из почвы эманации радия, что приводит к увеличению количества легких ионов. Ионизирующее действие распыляемой воды проявляется в усилении ионизации воздуха, что особенно заметно у фонтанов, по берегам бурных рек, у водоемов.

В.И. Архангельский, В.Ф. Кириллов