Государственное автономное профессиональное
Образовательное учреждение Саратовской области
«Саратовский областной базовый медицинский колледж»
Курсовая работа
Роль фельдшера в подготовке пациентов к рентгенологическим методам исследования
Специальность: Лечебное дело
Квалификация: фельдшер
Студентка:
Малкина Регина Владимировна
Руководитель:
Евстифеева Татьяна Николаевна
Введение………………………………………………………………… 3
Глава 1. История развития рентгенологии как науки………………… 6
1.1.Рентгенология в России…………………………………………….. 8
1.2. Рентгенологические методы исследования……………………….. 9
Глава 2.Подготовка пациента к рентгенологическим методам
исследования…………………………………………………………….. 17
Заключение………………………………………………………………. 21
Список используемой литературы……………………………………... 22
Приложения……………………………………………………………… 23
Введение
Сегодня рентгенодиагностика получает новое развитие. Используя вековой опыт традиционных рентгенологических методик и вооружившись новыми цифровыми технологиями, лучевая диагностика по-прежнему лидирует в диагностической медицине.
Рентген представляет собой проверенный временем и при этом вполне современный способ исследования внутренних органов пациента с высокой степенью информативности. Рентгенография может быть главным или одним из методов исследования больного с целью установления правильного диагноза или выявления начальных стадий некоторых заболеваний, протекающих без симптомов.
Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.
Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.
В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.
Рентгенологические методы исследования человеческого организма являются одними из наиболее популярных методов исследования и используются для изучения строения и функции большинства органов и систем нашего тела. Несмотря на то, что доступность современных методов компьютерной томографии с каждым годом увеличивается, традиционная рентгенография по-прежнему широко востребована.
Сегодня трудно себе представить, что медицина использует этот метод чуть более ста лет. Нынешним врачам, «избалованным» КТ (компьютерной томографией) и МРТ (магнито-резонансной томографией) трудно даже предположить, что можно работать с больным без возможности «заглянуть внутрь» живого человеческого тела.
Однако история метода действительно берет свое начало всего лишь в 1895 году, когда Вильгельм Конрад Рентген впервые обнаружил затемнение фотопластинки под действием рентгеновского излучения. В дальнейших экспериментах с различными объектами ему удалось получить на фотопластинке изображение костного скелета кисти.
Этот снимок, а затем и метод стал первым в мире методом медицинской визуализации. Задумайтесь: до этого нельзя было прижизненно, без вскрытия (не инвазивно) получить изображение органов и тканей. Новый метод стал громадным прорывом в медицине и моментально распространился по миру. В России первый рентгеновский снимок был сделан 1896 году.
В настоящее время рентгенография остается основным методом диагностики поражений костно-суставной системы. Кроме того, рентгенография используется при исследованиях легких, желудочно-кишечного тракта, почек и т. д.
Целью данной работы является показать роль фельдшера в подготовке пациента к рентгенологическим методам исследования.
Задача данной работы: Раскрыть историю рентгенологии, её появления в России, рассказать о самих рентгенологических методах исследования, и особенности подготовки по некоторым из них.
Глава 1.
Рентгенология, без которой невозможно представить себе современную медицину, зародилась благодаря открытию немецким физиком В.К. Рентгеном проникающего излучения. Эта отрасль, как ни какая другая, внесла в развитие медицинской диагностики неоценимый по значимости вклад.
В 1894 г немецкий физик В. К. Рентген (1845 - 1923) приступает к экспериментальным исследованиям электрических разрядов в стеклянных вакуумных трубках. Под действием этих разрядов в условиях сильно разреженного воздуха образуются лучи, известные как катодные.
Занимаясь их изучением, Рентген случайно обнаружил свечение в темноте флюоресцирующего экрана (картона, покрытого платиносинеродистым барием) под действием катодного излучения, исходящего из вакуумной трубки. Чтобы исключить воздействие на кристаллы платиносинеродистого бария видимого света, исходящего от включенной трубки, ученый обернул ее в черную бумагу.
Свечение продолжалось, как и тогда, когда ученый отодвинул экран почти на два метра от трубки, поскольку предполагалось, что катодные лучи проникают слой воздуха только в несколько сантиметров. Рентген сделал заключение, что либо ему удалось получить катодные лучи, обладающие уникальными способностями, либо он открыл действие неизвестных лучей.
Около двух месяцев ученый занимался исследованием новых лучей, которые он назвал Х-лучами. В процессе изучения взаимодействия лучей с разными по плотности предметами, которые Рентген подставлял по ходу излучения, он обнаружил проникающую способность этого излучения. Степень ее зависела от плотности предметов и проявлялась в интенсивности свечения флюоресцирующего экрана. Это свечение то ослабевало, то усиливалось и не наблюдалось вовсе, когда была подставлена свинцовая пластинка.
В конце концов, ученый подставил по ходу лучей собственную кисть и увидел на экране яркое изображение костей кисти на фоне более слабого изображения ее мягких тканей. Для фиксации теневых изображений предметов Рентген заменил экран фотопластинкой. В частности, он получил на фотопластинке изображение собственной кисти, которую облучал в течение 20 минут.
Рентген занимался исследованием Х-лучей с ноября 1895 г по март 1897 г. За это время ученый опубликовал три статьи с исчерпывающим описанием свойств рентгеновского излучения. Первая статья «О новом типе лучей» появилась в журнале Вюрцбургского физико-медицинского общества 28 декабря 1895 г.
Таким образом, было зарегистрировано изменение фотопластинки под воздействием Х-лучей, что положило начало развитию будущей рентгенографии.
Следует отметить, что многие исследователи занимались изучением катодных лучей до В. Рентгена. В 1890 г в одной из американских лабораторий был случайно получен снимок с рентгеновским изображением лабораторных предметов. Есть сведения, что изучением тормозного излучения занимался Никола Тесла и зафиксировал результаты этого исследования в дневниковых записях в 1887 г. В 1892 году Г. Герц и его ученик Ф. Ленард, а так же разработчик катодно-лучевой трубки В. Крукс в своих экспериментах отмечали действие катодного излучения на почернение фотопластинок.
Но все эти исследователи не придавали серьезного значения новым лучам, не занимались их дальнейшим изучением и не публиковали свои наблюдения. Поэтому открытие Х-лучей В. Рентгеном можно считать независимым.
Заслуга Рентгена еще и в том, что он сразу понял важность и значимость открытых им лучей, разработал метод их получения, создал конструкцию рентгеновской трубки с алюминиевым катодом и платиновым анодом для производства интенсивного рентгеновского излучения.
За это открытие в 1901 г В. Рентгену была присуждена Нобелевская премия по физике, первая в этой номинации.
Революционное открытие Рентгена совершило переворот в диагностике. Первые рентгеновские аппараты были созданы в Европе уже в 1896 г. В этом же году компания KODAK открыла производство первых рентгеновских пленок.
С 1912 г начинается период стремительного развития рентгенодиагностики во всем мире, и рентгенология начинает занимать важное место в медицинской практике.
Ренгенология в России.
Первый рентгеновский снимок в России был сделан в 1896 г. В этом же году по инициативе российского ученого А. Ф. Иоффе, ученика В. Рентгена, впервые было введено название «рентгеновские лучи».
В 1918 г в России открылась первая в мире специализированная рентгенологическая клиника, где рентгенография применялась для диагностики все большего числа заболеваний, особенно легочных.
В 1921 г в Петрограде начинает работу первый в России рентгено-стоматологический кабинет. В СССР правительство выделяет необходимые средства на развитие производства рентгеновского оборудования, которое выходит на мировой уровень по качеству. В 1934 г был создан первый отечественный томограф, а в 1935 г - первый флюорограф.
«Без истории предмета нет теории предмета» (Н. Г. Чернышевский). История пишется не только с познавательной целью. Вскрывая закономерности развития рентгено-радиологии в прошлом, мы приобретаем возможность лучше, правильнее, увереннее, активнее строить будущее этой науки.
Рентгенологические методы исследования
Все многочисленные методики рентгенологического исследования разделяют на общие и специальные.
К общим относятся методики, предназначенные для изучения любых анатомических областей и выполняемые на рентгеновских аппаратах общего назначения (рентгеноскопия и рентгенография).
К общим следует отнести и ряд методик, при которых также возможно изучение любых анатомических областей, но требуются либо особая аппаратура (флюорография, рентгенография с прямым увеличением изображения), либо дополнительные приспособления к обычным рентгеновским аппаратам (томография, электрорентгенография). Иногда эти методики называют также частными.
К специальным методикам относятся те, которые позволяют получить изображение на специальных установках, предназначенных для исследования определенных органов и областей (маммография, ортопантомография). К специальным методикам относится также большая группа рентгенокон-трастных исследований, при которых изображения получаются с применением искусственного контрастирования (бронхография, ангиография, экскреторная урография и др.).
Общие методики рентгенологического исследования
Рентгеноскопия - методика исследования, при которой изображение объекта получают на светящемся (флюоресцентном) экране в реальном масштабе времени. Некоторые вещества интенсивно флюоресцируют под влиянием рентгеновских лучей. Эту флюоресценцию используют в рентгенодиагностике, применяя картонные экраны, покрытые флюоресцирующим веществом.
Рентгенография - это методика рентгенологического исследования, при которой получается статическое изображение объекта, зафиксированное на каком-либо носителе информации. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др. На рентгенограммах можно получить изображение любой анатомической области. Снимки всей анатомической области (голова, грудь, живот) называют обзорными. Снимки с изображением небольшой части анатомической области, которая наиболее интересует врача, называют прицельными.
Флюорография - фотографирование рентгеновского изображения с флюоресцентного экрана на фотографическую пленку различного формата. Такое изображение всегда уменьшено.
Электрорентгенография - методика, при которой диагностическое изображение получают не на рентгеновской пленке, а на поверхности селеновой пластины с переносом на бумагу. Равномерно заряженная статическим электричеством пластина используется вместо кассеты с пленкой и в зависимости от разного количества ионизирующего излучения, попавшего в различные точки ее поверхности, по-разному разряжается. На поверхность пластины распыляют тонкодисперсный угольный порошок, который по законам электростатического притяжения распределяется по поверхности пластины неравномерно. На пластину накладывают лист писчей бумаги, и изображение переводится на бумагу в результате прилипания угольного порошка. Селеновую пластину в отличие от пленки можно использовать неоднократно. Методика отличается быстротой, экономичностью, не требует затемненного помещения. Кроме того, селеновые пластины в незаряженном состоянии индифферентны к воздействию ионизирующих излучений и могут быть использованы при работе в условиях повышенного радиационного фона (рентгеновская пленка в этих условиях придет в негодность).
Специальные методики рентгенологического исследования.
Маммография - рентгенологическое исследование молочной железы. Оно выполняется для изучения структуры молочной железы при обнаружении в ней уплотнений, а также с профилактической целью.
Методики с применением искусственного контрастирования:
Диагностический пневмоторакс - рентгенологическое исследование органов дыхания после введения газа в плевральную полость. Выполняется с целью уточнения локализации патологических образований, расположенных на границе легкого с соседними органами. С появлением метода КТ применяется редко.
Пневмомедиастинография - рентгенологическое исследование средостения после введения газа в его клетчатку. Выполняется с целью уточнения локализации выявленных на снимках патологических образований (опухолей, кист) и их распространения на соседние органы. С появлением метода КТ практически не применяется.
Диагностический пневмоперитонеум - рентгенологическое исследование диафрагмы и органов полости живота после введения газа в полость брюшины. Выполняется с целью уточнения локализации патологических образований, выявленных на снимках на фоне диафрагмы.
Пневморетроперитонеум - методика рентгенологического исследования органов, расположенных в забрюшинной клетчатке, путем введения в забрюшин-ную клетчатку газа с целью лучшей визуализации их контуров. С внедрением в клиническую практику УЗИ, КТ и МРТ практически не применяется.
Пневморен - рентгенологическое исследование почки и рядом расположенного надпочечника после введения газа в околопочечную клетчатку. В настоящее время выполняется крайне редко.
Пневмопиелография - исследование полостной системы почки после заполнения ее газом через мочеточниковый катетер. В настоящее время используется преимущественно в специализированных стационарах для выявления внутрилоханочных опухолей.
Пневмомиелография - рентгенологическое исследование подпаутинного пространства спинного мозга после его контрастирования газом. Используется для диагностики патологических процессов в области позвоночного канала, вызывающих сужение его просвета (грыжи межпозвоночных дисков, опухоли). Применяется редко.
Пневмоэнцефалография - рентгенологическое исследование ликворных пространств головного мозга после их контрастирования газом. После внедрения в клиническую практику КТ и МРТ выполняется редко.
Пневмоартрография - рентгенологическое исследование крупных суставов после введения в их полость газа. Позволяет изучить суставную полость, выявить в ней внутрисуставные тела, обнаружить признаки повреждения менисков коленного сустава. Иногда ее дополняют введением в полость сустава
водорастворимого РКС. Достаточно широко используется в лечебных учреждениях при невозможности выполнения МРТ.
Бронхография - методика рентгенологического исследования бронхов после их искусственного контрастирования РКС. Позволяет выявить различные патологические изменения бронхов. Широко используется в лечебных учреждениях при недоступности КТ.
Плеврография - рентгенологическое исследование плевральной полости после ее частичного заполнения контрастным препаратом с целью уточнения формы и размеров плевральных осумкований.
Синография - рентгенологическое исследование околоносовых пазух после их заполнения РКС. Применяется тогда, когда возникают затруднения в интерпретации причины затенения пазух на рентгенограммах.
Дакриоцистография - рентгенологическое исследование слезных путей после их заполнения РКС. Применяется с целью изучения морфологического состояния слезного мешка и проходимости слезноносового канала.
Сиалография - рентгенологическое исследование протоков слюнных желез после их заполнения РКС. Применяется для оценки состояния протоков слюнных желез.
Рентгеноскопия пищевода, желудка и двенадцатиперстной кишки - проводится после их постепенного заполнения взвесью бария сульфата, а при необходимости - и воздухом. Обязательно включает в себя полипозиционную рентгеноскопию и выполнение обзорных и прицельных рентгенограмм. Широко применяется в лечебных учреждениях для выявления различных заболеваний пищевода, желудка и двенадцатиперстной кишки (воспалительно-деструктивные изменения, опухоли и др.) (см. рис. 2.14).
Энтерография - рентгенологическое исследование тонкой кишки после заполнения ее петель взвесью бария сульфата. Позволяет получить информацию о морфологическом и функциональном состоянии тонкой кишки (см. рис. 2.15).
Ирригоскопия - рентгенологическое исследование толстой кишки после ретроградного контрастирования ее просвета взвесью бария сульфата и воздухом. Широко применяется для диагностики многих заболеваний толстой кишки (опухоли, хронический колит и т. д.) (см. рис. 2.16).
Холецистография - рентгенологическое исследование желчного пузыря после накопления в нем контрастного вещества, принятого внутрь и выделенного с желчью.
Выделительная холеграфия - рентгенологическое исследование желчных путей, контрастированных с помощью йодсодержащих препаратов, вводимых внутривенно и выделяемых с желчью.
Холангиография - рентгенологическое исследование желчных протоков после введения РКС в их просвет. Широко используется для уточнения морфологического состояния желчных протоков и выявления в них конкрементов. Может выполняться во время оперативного вмешательства (ин-траоперационная холангиография) и в послеоперационном периоде (через дренажную трубку).
Ретроградная холангиопанкреатикография - рентгенологическое исследование желчных протоков и протока поджелудочной железы после введения в их просвет контрастного препарата под рентгеноэндоскопическим ко Экскреторная урография - рентгенологическое исследование мочевых органов после внутривенного введения РКС и выделения его почками. Широко распространенная методика исследования, позволяющая изучать морфологическое и функциональное состояние почек, мочеточников и мочевого пузыря.
Ретроградная уретеропиелография - рентгенологическое исследование мочеточников и полостных систем почек после заполнения их РКС через мочеточниковый катетер. По сравнению с выделительной урографией позволяет получить более полную информацию о состоянии мочевых путей в результате их лучшего заполнения контрастным препаратом, вводимым под небольшим давлением. Широко применяется в специализированных урологических отделениях.
Цистография - рентгенологическое исследование мочевого пузыря, заполненного РКС.
Уретрография - рентгенологическое исследование мочеиспускательного канала после его заполнения РКС. Позволяет получить информацию о проходимости и морфологическом состоянии уретры, выявить ее повреждения, стриктуры и т. д. Применяется в специализированных урологических отделениях.
Гистеросальпингография - рентгенологическое исследование матки и маточных труб после заполнения их просвета РКС. Широко используется в первую очередь для оценки проходимости маточных труб.
Позитивная миелография - рентгенологическое исследование под-паутинных пространств спинного мозга после введения водорастворимых РКС. С появлением МРТ применяется редко.
Аортография - рентгенологическое исследование аорты после введения в ее просвет РКС.
Артериография - рентгенологическое исследование артерий с помощью введенных в их просвет РКС, распространяющихся по току крови. Некоторые частные методики артериографии (коронарография, каротидная ангиография), будучи высокоинформативными, в то же время технически сложны и небезопасны для пациента, в связи с чем применяются только в специализированных отделениях.
Кардиография - рентгенологическое исследование полостей сердца после введения в них РКС. В настоящее время находит ограниченное применение в специализированных кардиохирургических стационарах.
Ангиопульмонография - рентгенологическое исследование легочной артерии и ее ветвей после введения в них РКС. Несмотря на высокую информативность, небезопасна для пациента, в связи с чем в последние годы предпочтение отдается компьютерно-томографической ангиографии.
Флебография - рентгенологическое исследование вен после введения в их просвет РКС.
Лимфография - рентгенологическое исследование лимфатических путей после введения в лимфатическое русло РКС.
Фистулография - рентгенологическое исследование свищевых ходов после их заполнения РКС.
Вульнерография - рентгенологическое исследование раневого канала после заполнения его РКС. Чаще применяется при слепых ранениях живота, когда другие методы исследования не позволяют установить, является ранение проникающим или непроникающим.
Кистография - контрастное рентгенологическое исследование кист различных органов с целью уточнения формы и размеров кисты, ее топографического расположения и состояния внутренней поверхности.
Дуктография - контрастное рентгенологическое исследование млечных протоков. Позволяет оценить морфологическое состояние протоков и выявить небольшие опухоли молочной железы с внутрипротоковым ростом, неразличимые на маммограммах.
Глава 2.
Общие правила подготовки пациента:
1.Психологическая подготовка. Пациент должен понимать важность предстоящего исследования, должен быть уверен в безопасности предстоящего исследования.
2.Перед проведением исследования необходимо позаботится о том, чтобы сделать орган более доступным во время исследования. Перед эндоскопическими исследованиями необходимо освободить исследуемый орган от содержимого. Органы пищеварительной системы исследуются натощак: в день исследования нельзя пить, есть, принимать лекарства, чистить зубы, курить. Накануне предстоящего исследования разрешен легкий ужин, не позднее 19.00. Перед исследованием кишечника назначается бесшлаковая диета (№4) в течение 3-х дней, лекарственные препараты для уменьшения газообразования (активированный уголь) и улучшения пищеварения (ферментные препараты), слабительные средства; клизмы накануне исследования. По особому назначению врача проводится примедикация (введение атропина и обезболивающих препаратов). Очистительные клизмы ставятся не позднее за 2 часа до предстоящего исследования, так как изменяется рельеф слизистой оболочки кишечника.
R-скопия желудка:
1. За 3 дня до исследования из питания пациента исключается продукты вызывающие газообразование (диета 4)
2. Вечером, не позднее 17 часов легкий ужин: творог, яйцо, кисель, манная каша.
3. Исследование проводится строго натощак (не пить, не есть, не курить, не чистить зубы).
Ирригоскопия:
1. За 3 дня до исследования исключить из питания пациента продукты вызывающие газообразовании (бобовые, фрукты, овощи, соки, молоко).
2. Если пациент беспокоит метеоризм, назначают активированный уголь в течение 3-х дней 2-3 раза в день.
3. За сутки до исследования перед обедом дают пациенту 30,0 касторового масла.
4. Накануне вечером легкий ужин не позднее 17 часов.
5. В 21 и 22 часа вечером накануне сделать очистительные клизмы.
6.Утром в день исследования в 6 и 7 часов очистительные клизмы.
7. Разрешается легкий завтрак.
8. За 40мин. – 1 час до исследования ввести газоотводную трубку на 30мин.
Холецистография:
1. В течение 3-х дней исключается продукты, вызывающие метеоризм.
2. Накануне исследования легкий ужин не позднее 17 часов.
3. С 21.00 до 22.00 часов накануне больной применяет контрастный препарат (биллитраст) по инструкции зависимости от веса тела.
4. Исследования проводятся натощак.
5. Больного предупреждают, что может возникнуть жидкий стул, тошнота.
6. В R – кабинет пациент должен принести с собой 2 сырых яйца для желчегонного завтрака.
Внутривенная холеграфия:
1. 3 дня соблюдение диеты с исключением газообразующих продуктов.
2. Выяснить у пациента, нет ли аллергии на йод (насморк, сыпь. зуд кожи, рвота). Сообщить врачу.
3. Провести пробу за 24 часа до исследования, для чего в/в ввести 1-2мл билигноста на 10мл физиологического раствора.
4. За сутки до исследования отменяется желчегонные препараты.
5. Вечером 21 и 22 часа очистительная клизма и утром в день исследования за 2 часа – очистительная клизма.
6. Исследование проводится натощак.
Урография:
1. 3 дня бесшлаковая диета (№ 4)
2. За сутки до исследования проводится проба на чувствительность к контрастному препарату.
3. Вечером накануне в 21.00 и 22.00 очистительные клизмы. Утром в 6.00 и 7.00 очистительные клизмы.
4. Исследование проводится натощак, перед исследованием пациент освобождает мочевой пузырь.
Рентгенография:
1.Необходимо максимально освободить исследуемую область от одежды.
2.Область исследования также должна быть свободна от повязок, пластырей, электродов и других посторонних предметов, которые могут снизить качество получаемого изображения.
3.Убедиться, что отсутствуют различные цепочки, часы, ремень, заколки, если они расположены в области, которая будет подвергаться изучению.
4.Открытой оставляют только интересующую доктора область, остальное тело закрывают специальным защитным фартуком, экранирующим рентгеновские лучи.
Заключение.
Таким образом в настоящие время рентгенологические методы исследования нашли широкое диагностическое применение, и стал неотъемлемой частью клинического обследования больных. Также неотъемлемой частью является и подготовка пациента к рентгенологическим методам исследования, ведь каждое из них имеет свои особенности, при невыполнении которых, может привести к затруднению постановки диагноза.
Одна из главных частей подготовки пациента к рентгенологическим методам исследования является психологическая подготовка. Пациент должен понимать важность предстоящего исследования, должен быть уверен в безопасности предстоящего исследования. Ведь пациент в праве отказаться от данного исследования, что во многом осложнит постановку диагноза.
Литература
Антонович В.Б. "Рентгенодиагностика заболеваний пищевода, желудка, кишечника". – М., 1987.
Медицинская рентгенология. - Линденбратен Л. Д., Наумов Л.Б. - 2014г.;
Медицинская радиология (основы лучевой диагностики и лучевой терапии) - Линденбратен Л. Д., Королюк И.П. - 2012г.;
Основы медицинской рентгенотехники и методики рентгенологического исследования в клинической практике /Коваль Г.Ю., Сизов В.А, Загородская М.М. и др.; Под ред. Г. Ю.Коваль.-- К.: Здоровья, 2016г.
Пытель А.Я., Пытель Ю.А. "Рентгенодиагностика урологических заболеваний" – М., 2012.
Рентгенология: атлас / под ред. А. Ю. Васильева. - М. : ГЭОТАР-Медиа, 2013.
Руцкий А.В., Михайлов А.Н. "Рентгенодиагностический атлас". – Минск. 2016.
Сиваш Э.С., Сальман М.М. «Возможности рентгенологического метода», Москва, Изд. «Наука», 2015г.
Фанарджян В.А. " Рентгенодиагностика заболеваний пищеварительного тракта". – Ереван, 2012.
Щербатенко М.К., Береснева З.А. "Неотложная рентгенодиагностика острых заболеваний и повреждений органов брюшной полости". – М.,2013.
Приложения
Рисунок 1.1.Процедура рентгеноскопии.
Рисунок 1.2. Проведение ренгенографии.
Рисунок 1.3. Рентгенография грудной клетки.
Рисунок 1.4. Проведение флюорографии.
Электронно–оптическое усиление (ЭОУ). Работа электронно–оптического преобразователя (ЭОП) основана на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Яркость свечения экрана усиливается до 7 тыс. раз. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку.
Рентгенография – фотосъемка посредством рентгеновских лучей. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 × 18 см, 18 × 24 см, 24 × 30 см, 30 × 40 см и др.).
Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. Они представляют картон, который пропитывается специальным люминофором (вольфрамо-кислым кальцием), обладающий флюоресцирующим свойством под влиянием рентгеновых лучей. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Очень хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны – Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.
Для отсеивания мягких лучей первичного потока, который может достигнуть пленки, а также вторичного излучения, используются специальные подвижные решетки. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, полосканию в воде, закреплению и тщательной промывке пленки в текучей воде с последующей сушкой. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин. или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Преимущество рентгенографии: устраняет недостатки рентгеноскопии. Недостаток: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.
Электрорентгенография. Метод получения рентгеновского изображения на полупроводниковых пластинах. Принцип метода: при попадании лучей на высокочувствительную селеновую пластину в ней меняется электрический потенциал. Селеновая пластинка посыпается порошком графита. Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, в которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли заряд под действием рентгеновского излучения. Электрорентгенография позволяет в 2-3 минуты перенести изображение с пластины на бумагу. На одной пластине можно произвести более 1000 снимков. Преимущество электрорентгенографии:
1. Быстрота.
2. Экономичность.
Недостаток: недостаточно высокая разрешающая способность при исследовании внутренних органов, более высокая доза излучения, чем при рентгенографии. Метод применяется, в основном, при исследовании костей и суставов в травмопунктах. В последнее время применение этого метода все более ограничивается.
Компьютерная рентгеновская томография (КТ) (Приложение 2). Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.
КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Основой для разработки и создания КТ послужили различные модели математической реконструкции рентгеновского изображения объектов. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей. Если первое поколение КТ имело один детектор, и время для сканирования составляло 5-10 мин, то на томограммах третьего – четвертого поколений при наличии от 512 до 1100 детекторов и ЭВМ большой емкости время для получения одного среза уменьшилось до миллисекунд, что практически позволяет исследовать все органы и ткани, включая сердце и сосуды. В настоящее время применяется спиральная КТ, позволяющая проводить продольную реконструкцию изображения, исследовать быстро протекающие процессы (сократительную функцию сердца).
КТ основана на принципе создания рентгеновского изображения органов и тканей с помощью ЭВМ. В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, который из ЭВМ подается на телемонитор. Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением. Современные установки позволяют получить срезы толщиной от 2 до 8 мм. Рентгеновская трубка и приемник излучения движутся вокруг тела больного. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:
1. Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .
2. КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.
3. КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.
4. КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.
5. КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.
6. КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).
Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определение рецидивов и сопутствующих осложнений.
Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (HU) по шкале Хаунсфилда. Согласно этой шкале, HUводы принимают за 0; кости, обладающие наибольшей плотностью – за +1000, воздух, обладающий наименьшей плотностью, – за -1000.
Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, что HUпораженной ткани отличается от такового здоровой на 10 - 15 ед.
Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.
Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.
Такие методы рентгенологического исследования называются специальными. Органы и ткани человеческого организма становятся различимыми, если они поглощают рентгеновские лучи в различной степени. В физиологических условиях такая дифференциация возможна только при наличии естественной контрастности, которая обусловливается разницей в плотности (химическом составе этих органов), величине, положении. Хорошо выявляется костная структура на фоне мягких тканей, сердца и крупных сосудов на фоне воздушной легочной ткани, однако камеры сердца в условиях естественной контрастности невозможно выделить отдельно, как и органы брюшной полости, например. Необходимость изучения рентгеновыми лучами органов и систем, имеющих одинаковую плотность, привело к созданию методики искусственного контрастирования. Сущность этой методики заключается во введении в исследуемый орган искусственных контрастных веществ, т.е. веществ, имеющих плотность, различную от плотности органа и окружающей его среды.
Рентгеноконтрастные средства (РКС) принято подразделять на вещества с высоким атомным весом (рентгено-позитивные контрастные вещества) и низким (рентгено-негативные контрастные вещества). Контрастные вещества должны быть безвредными.
Контрастные вещества, которые интенсивно поглощают рентгеновские лучи (позитивные рентгеноконтрастные средства) это:
1. Взвеси солей тяжелых металлов – сернокислый барий, применяемый для исследования ЖКТ (он не всасывается и выводится через естественные пути).
2. Водные растворы органических соединений йода – урографин, верографин, билигност, ангиографин и др., которые вводятся в сосудистое русло, с током крови попадают во все органы и дают, кроме контрастирования сосудистого русла, контрастирование других систем - мочевыделительной, желчного пузыря и т.д.
3. Масляные растворы органических соединений йода – йодолипол и др., которые вводятся в свищи и лимфатические сосуды.
Неионные водорастворимые йодсодержащие рентгеноконтрастные средства: ультравист, омнипак, имагопак, визипак характеризуются отсутствием в химической структуре ионных групп, низкой осмолярностью, что значительно уменьшает возможность патофизиологических реакций, и тем самым обусловливается низкое количество побочных эффектов. Неионные йодсодержащие рентгеноконтрастные средства обусловливают более низкое количество побочных эффектов, чем ионные высокоосмолярные РКС.
Рентгенонегативные или отрицательные контрастные вещества – воздух, газы “не поглощают” рентгеновские лучи и поэтому хорошо оттеняют исследуемые органы и ткани, которые обладают большой плотностью.
Искусственное контрастирование по способу введения контрастных препаратов подразделяется на:
1. Введение контрастных веществ в полость исследуемых органов (самая большая группа). Сюда относятся исследования ЖКТ, бронхография, исследования свищей, все виды ангиографии.
2. Введение контрастных веществ вокруг исследуемых органов – ретропневмоперитонеум, пневморен, пневмомедиастинография.
3. Введение контрастных веществ в полость и вокруг исследуемых органов. Сюда относится париетография. Париетография при заболеваниях органов ЖКТ заключается в получении снимков стенки исследуемого полого органа после введения газа вначале вокруг органа, а затем в полость этого органа. Обычно проводят париетографию пищевода, желудка и толстой кишки.
4. Способ, в основе которого лежит специфическая способность некоторых органов концентрировать отдельные контрастные препараты и при этом оттенять его на фоне окружающих тканей. Сюда относятся выделительная урография, холецистография.
Флюорография – способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на пленку фотоаппаратом.
Томография (обычная) – для устранения суммационного характера рентгеновского изображения. Принцип: в процессе съемки рентгенологическая трубка и кассета с пленкой синхронно перемещаются относительно больного. В результате на пленке получается более четкое изображение только тех деталей, которые лежат в объекте на заданной глубине, в то время как изображение деталей, расположенных выше или ниже, становится нерезким, «размазывается».
Полиграфия – это получение нескольких изображений исследуемого органа и его части на одной рентгенограмме. Делается несколько снимков (в основном 3) на одной пленке через определенное время.
Рентгенокимография – это способ объективной регистрации сократительной способности мышечной ткани функционирующих органов по изменению контура изображения. Снимок производится через движущуюся щелевидную свинцовую решетку. При этом колебательные движения органа фиксируются на пленку в виде зубцов, имеющих характерную форму для каждого органа.
Дигитальная рентгенография – включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации. При этой технологии детектор преобразует рентгеновское излучение после его прохождения через исследуемый объект в электрический сигнал, который в аналого-цифровом преобразователе «превращается» в числовые значения. Компьютерная обработка получаемого цифрового изображения служит созданию такого изображения, которое оптимально пригодно для анализа результата обследования.
Рентгенодиапевтика – лечебно-диагностические процедуры. Имеются в виду сочетанные рентгеноэндоскопические процедуры с лечебным вмешательством. Например: при механической желтухе с дренированием желчных путей и введением медикаментов непосредственно в желчный пузырь. К рентгенодиапевтике (интервенционной радиологии) относят рентгеноэндоваскулярные вмешательства: рентгеноэндоваскулярная окклюзия и рентгеноэндоваскулярная дилатация».
В конечном итоге, предметом изучения в рентгенологии является теневое изображение. Особенностями теневого рентгеновского изображения является:
1. Изображение, складывающееся из многих темных и светлых участков – соответственно областям неодинакового ослабления рентгеновых лучей в разных частях объекта.
2. Размеры рентгеновского изображения всегда увеличены (кроме КТ) по сравнению с изучаемым объектом, и тем больше, чем дальше объект находится от пленки, и чем меньше фокусное расстояние (отстояние пленки от фокуса рентгеновской трубки).
3. Когда объект и пленка не в параллельных плоскостях, изображение искажается.
4. Изображение суммационное (кроме томографии). Следовательно, рентгеновские снимки должны быть произведены не менее, чем в двух взаимно перпендикулярных проекциях.
5. Негативное изображение при рентгенографии и КТ.
Каждая ткань и патологические образования, выявляемые при лучевом исследовании, характеризуются строго определенными признаками, а именно: числом, положением, формой, размером, интенсивностью, структурой, характером контуров, наличием или отсутствием подвижности, динамикой во времени.
Применение в медицине
Рентгенография применяется для диагностики: Рентгенологическое исследование (далее РИ) органов позволяет уточнить форму данных органов, их положение, тонус, перистальтику, состояние рельефа слизистой оболочки.
· РИ желудка и двенадцатиперстной кишки (дуоденография) важно для распознавания гастрита, язвенных поражений и опухолей.
Рентгенологическое исследование двенадцатиперстной кишки является важным вспомогательным методом диагностики патологических изменений общего желчного протока и большой дуоденальный сосочек (БДС). Более четко патологический процесс удается выявить при проведении рентгенологического исследования двенадцатиперстной кишки в условиях ее релаксации, получившего название релаксационной, или гипотонической дуоденографии. Этот метод исследования двенадцатиперстной кишки высоко оценен отечественными и зарубежными исследователями.
Релаксационная дуоденография позволяет диагностировать опухолевый процесс БДС двенадцатиперстной кишки, а также головки поджелудочной железы и подтвердить механическую причину развившейся желтухи. У больных, у которых операция на желчных путях, закончилась формированием билиодуоденальных анастомозов, она дает представление о функции сформированного соустья и выявляет патологические процессы в печеночно-желчном протоке, которые обусловливают рецидивы страдания.
· РИ желчного пузыря (холецистография) и желчевыводящих путей (холеграфия) проводят для оценки контуров, размеров, просвета внутри- и внепеченочных желчных протоков, наличие или отсутствие конкрементов, уточняют концентрационную и сократительную функции желчного пузыря.
Холецистография - это метод рентгенологического исследования желчного пузыря с помощью контрастного вещества. Перед холецистографии производят обзорный рентгеновский снимок правой половины брюшной полости. За 12-15 часов до холецистографии больной принимает билитраст или другое контрастное вещество, запивая его сладким чаем. Накануне вечером и за 2 часа до исследования больному с помощью клизмы очищают кишечник. После просвечивания производят несколько снимков желчного пузыря в разных проекциях при вертикальном и горизонтальном положениях исследуемого. Затем больной съедает специальный завтрак (яичные желтки, сливочное масло) и ему производят еще несколько снимков с интервалом 15-20 мин.
Холецистография позволяет определять положение, форму, величину, смещаемость желчного пузыря, его способность концентрировать желчь и сокращаться после приема жирной пищи. Холецистография может быть произведена в стационарных и амбулаторных условиях для распознавания функциональных или органических поражений и в особенности камней желчного пузыря, которые видны на холецистограммах в виде дефектов заполнения.
· РИ толстой кишки (ирригоскопия) применяется для распознавания опухолей, полипов, дивертикулов и кишечной непроходимости.
Ирригоскопия - рентгенологическое исследование толстой кишки при ретроградном заполнении ее рентгеноконтрастной взвесью. Ирригоскопия применяется для уточнения диагноза заболеваний толстой кишки (пороки развития, опухоли, хронический колит, дивертикулез, свищи, рубцовые сужения и др.).
Ирригоскопия дает возможность получения информации о морфологических изменениях толстой кишки, что в плане диагностики нозологических форм представляется более ценным. Ирригоскопия нередко является решающим методом диагностики опухолей, дивертикулов толстой кишки. Увеличивает диагностические возможности ирригоскопии методика двойного контрастирования. В отношении таких заболеваний как колиты, туберкулез могут быть получены лишь косвенные признаки.
· Рентгеногра́фия органов грудной клетки - классическое проекционное рентгенографическое исследование грудной клетки, применяемое для диагностики патологических изменений грудной клетки, органов грудной полости и близлежащих анатомических структур. Рентгенография грудной клетки является одним из наиболее распространённых рентгенографических исследований.
Как и при других рентгенологических исследованиях, для получения рентгенограммы грудной клетки используется один из видов ионизирующего излучения - рентгеновское излучение.
Рентгенография грудной клетки способствует выявлению патологических изменений мягких тканей, костей грудной клетки и анатомических структур, расположенных в грудной полости (лёгких, плевры, средостения). Наиболее часто при рентгенографии диагностируются пневмония и застойная сердечная недостаточность. Наряду с диагностическими целями, рентгенография грудной клетки используется в качестве скринингового метода для оценки состояния лёгочной ткани, в частности, у лиц с профессиональными вредностями (например, шахтёров).
При некоторых заболеваниях органов грудной клетки рентгенография хороша в качестве скринингового метода, однако имеет недостаточную диагностическую ценность; в этих случаях проводятся дополнительные исследования (компьютерная томография, бронхоскопия и т. д.).
Следует учитывать, что в некоторых случаях рентгенография грудной клетки может быть не информативна (то есть, демонстрировать ложно-отрицательный результат). Такие ситуации могут быть обусловлены проекционным наслоением тени патологического очага на тень нормальной анатомической структуры (например, диафрагмы, средостения), малой интенсивностью очага (например, начальными воспалительными проявлениями), неадекватной проекцией исследования (особенно, в случае патологии средостения или переломов рёбер, грудины).
· позвоночника - дегенеративно-дистрофические (остеохондроз, спондилёз, искривления), инфекционные и воспалительные (различные виды спондилитов), опухолевые заболевания.
· различных отделов периферического скелета - на предмет различных травматических (переломы, вывихи), инфекционных и опухолевых изменений.
· брюшной полости - перфорации органов, функции почек (экскреторная урография) и другие изменения.
Экскреторная_урография_рентгенологический метод_исследования мочевыводящих путей, основанный на способности почки выделять (экскретировать)определённые рентгеноконтрастные вещества, введённые в организм, в результате чего на рентгенограммах получается изображение почек и мочевых путей. В качестве рентгеноконтрастного вещества используют йодсодержащие концентрированные (60-80 %) растворы сергозина, урографина, уротраста и др. Препарат вводят внутривенно струйно медленно (в течение 2-3 мин). Количество контраста рассчитывается на вес.
Серия рентгенограмм, выполненных: первая на 5-7-й, вторая на 12-15-й, третья на 20-25 минуте, в случае задержки выведения контрастного вещества делают отсроченные снимки на 45 и 60 минуте. Исследование позволяет составить практически полное представление о выделении контрастного вещества почками и его продвижении по мочевыводящим путям. Количество снимков определяется видом патологии.
При анализе экскреторных урограмм оцениваются: положение, форма, размеры, контуры почек, функциональное состояние почек, форма и контуры мочеточников и мочевого пузыря.
· Метросальпингография (МСГ) – это один из самых часто применяемых методов гинекологического исследования при бесплодии, позволяющий выявить непроходимость маточных труб и перитубарные спайки. Самым современным, наименее травматичным и наиболее информативным методом оценки проходимости труб сегодня является селективная метросальпингография (введение контраста осуществляется со стороны полости матки прицельно в устья маточных труб). Селективная МСГ предполагает возможность выполнения реканализции (восстановления проходимости) маточных труб при нарушении проходимости интерстициальных (начальных) отделов труб. Процедура селективной МСГ не сопровождается болезненными ощущениями и не требует использования наркоза. Как правило, достаточно приема накануне выполнения процедуры спазмолитиков и стандартных обезболивающих таблеток.
· Ортопантомография
Рентгенологическое исследование в стоматологии, ЛОР, челюстно-лицевой хирургии, косметологии и т.д., позволяющее получать развёрнутое изображение всех зубов с челюстями, прилежащими отделами лицевого скелета. Является первичным рентгенологическим исследованием.
Ортопантомография (ОПТГ) бывает цифровой и плёночной. Однако в последние годы плёночная ОПТГ почти не применяется. Преимущество цифровой ОПТГ:
· снижение времени и дозы облучения пациента;
· получение качественного изображения, подверженного последующим графическим обработкам;
· возможность записи на магнитные носители с созданием электронных архивов.
Выявление поражений:
1. Твёрдых тканей зуба. Воспаление (кариес), нарушение целостности зуба (перелом, дефект участка), наличие дополнительного канала или инструментов в канале, новообразования в тканях и костях кости и пр.
2. Изменений периодонта.
3. Костей челюстей и прилежащего лицевого скелета. Переломы (травматические, патологические) костей челюсти и лицевого скелета, новообразования, воспалительные процессы (остеомиелит, периостит), состояние полостей в костях (околоносовых пазух)и пр.
4. Мягких тканей челюстей. Травмы, новообразования, воспалительные процессы, инородные тела, состояние перед и после внедрения импланта и пр.
5. Контроль этапов лечения и динамики течения заболеваний (качество пломбировки канала, штифты, импланты и пр.).
ОПТГ способствует точной постановке диагноза, контролю за лечением и помогает избежать многочисленных осложнений.
· РИ молочной железы
Маммография - это особый вид обследования молочных желез, который основан на использовании рентгеновского излучения низкой дозы. Снимок, полученный при маммографическом исследовании (маммограмма), применяется для диагностики и выявления заболеваний молочных желез у женщин на ранних стадиях.
Рентгенологическое исследование представляет собой неинвазивную диагностическую методику, которая помогает врачам обнаруживать и лечить различные заболевания. При этом те или иные части тела подвергаются воздействию небольшой дозы ионизирующего излучения, что позволяет получить их снимок - рентгенограмму. Рентгенологическое исследование является самым старым методом визуализации и используется в диагностике чаще всего.
Двумя недавними достижениями в области маммографического обследования стало появление цифровой маммографии и систем компьютерного обнаружения патологических изменений.
Выводы по главе 1
Рентгенологическое исследование - применение рентгеновского излучения в медицине для изучения строения и функции различных органов и систем и распознавания заболеваний. Рентгенологическое исследование основано на неодинаковом поглощении рентгеновского излучения разными органами и тканями в зависимости от их объема и химического состава. Чем сильнее поглощает данный орган рентгеновское излучение, тем интенсивнее отбрасываемая им тень на экране или пленке.
Рентгенологическое исследование позволяет изучать морфологию и функцию различных систем и органов в целостном организме без нарушения его жизнедеятельности. Оно дает возможность рассматривать органы и системы в различные возрастные периоды, позволяет выявлять даже небольшие отклонения от нормальной картины и тем самым ставить своевременный и точный диагноз ряда заболеваний.
Итогом рентгенологического исследования является формулировка заключения, в котором указывают диагноз болезни или при недостаточности полученных данных наиболее вероятные диагностические возможности.
При соблюдении правильной техники и методики РИ является безопасным и не может причинить вреда обследуемым. Большую роль в РИ играет медицинская сестра. Именно медицинская сестра осуществляет подготовку пациента к исследованию. Она проводит беседу о предстоящей процедуре, уточняет ранее проводимые рентгенологические исследования, психологически настраивает пациента и получает его согласие на проведение процедуры. Наблюдает после процедуры за пациентом и выполняет назначения врача.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Т ема. Рентгеновские методы исследования
рентгеновский микроскопия луч спектроскопия
Рентгеновское излучение, открытое (1895 г.) немецким физиком, Нобелевским лауреатом (1901 г.) В. Рентгеном (W. Rцntgen), занимает спектральную область между гамма- и УФ-излучением в пределах длин волн 10-3-102 нм. Излучение с < 0,2 нм условно называют жестким, а с > 0,2 нм - мягким. В совокупность рентгеновских методов исследования входят рентгеновские микроскопия, спектроскопия и рентгеновский структурный и фазовый анализы.
Рентгеновская спектроскопия
Рентгеновская спектроскопия (рентгеновский спектральный анализ) изучает рентгеновские спектры испускания (эмиссионная спектроскопия) и поглощения (абсорбционная спектроскопия).
Рентгеновские спектры - следствие переходов электронов внутренних оболочек атомов. Для получения рентгеновских спектров образец бомбардируют электронами в рентгеновской трубке (электровакуумный прибор для получения рентгеновских лучей) либо возбуждают флуоресценцию исследуемого вещества, облучая его рентгеновским излучением. Поток первичного рентгеновского излучения направляют на образец, а отразившееся от него вторичное рентгеновское излучение попадает на кристалл-анализатор. На его атомной структуре осуществляется дифракция рентгеновских лучей - разложение вторичного излучения в спектр по длине волн. Отраженный поток направляется на регистрацию (рентгеновская фотопленка, ионизационная камера, счетчик и др.).
Рентгеновские спектры поглощения несут информацию о переходе электронов с внутренней оболочки атома на возбужденные оболочки. Спектр имеет резкую границу (порог поглощения) в области низких частот излучения. Часть спектра до нее соответствует переходам электронов в связанные состояния. За порогом поглощения взаимодействие электронов, удаленных из атома, с соседними атомами приводит к появлению на спектре минимумов и максимумов поглощения. Расстояния между ними коррелируют с межатомными расстояниями в веществе образца.
Рентгеновские спектры испускания (эмиссионные спектры) несут информацию о переходе электронов с валентных оболочек на вакансии на внутренних оболочках, т.е. отражают структуру валентных оболочек атома. Особенно ценную информацию получают при анализе зависимости интенсивности линий на эмиссионных спектрах монокристалла от угла поворота образца. В этом случае интенсивности линий пропорциональны заселенности уровней, с которых совершается переход электронов.
По признакам механизма возбуждения первичного излучения, падающего на образец, различают три метода рентгеновской спектроскопии: рентгеноспектральный микроанализ, рентгеновский флуоресцентный и рентгенорадиометрический анализ.
Рентгеноспектральный микроанализ основан на возбуждении электронным зондом (пучком сфокусированных электронов) характеристического рентгеновского излучения в образце. Электронный зонд (диаметр ~ 1 мкм) формируют с помощью рентгеновских микроанализаторов, созданных на базе электронных микроскопов (просвечивающих или растровых). В приборе поддерживается высокий вакуум. По спектру характеристического рентгеновского излучения, возбужденного зондом на микроучастке образца, идентифицируют атомные номера химических элементов, а по интенсивности линий - их концентрацию на микроучастке. Абсолютный и относительный пределы обнаружения элементов в образце 10-12-10-6 г и 10-1-10-3 %, соответственно.
Рентгеновский флуоресцентный анализ (РФА) базируется на использовании вторичного рентгеновского излучения, чтобы исключить радиационное повреждение образца и повысить воспроизводимость результатов. Прибор состоит из рентгеновской трубки, кристалла-анализатора, разлагающего вторичное излучение в спектр, и детектора - счетчика ионизирующего излучение.
Качественный РФА основан на анализе зависимости частоты характеристического рентгеновского излучения, испускаемого химическим элементом, от атомного номера элемента. РФА предназначен для изучения химических связей, распределения валентных электронов, определения заряда ионов. Его применяют при анализе материалов в металлургии, геологии, при переработке керамики и т.д.
Рентгенорадиометрический анализ (РРА) предусматривает измерение рентгеновского излучения, которое возникает при взаимодействии излучения радиоизотопного источника и электронов, находящихся на внутренних оболочках атомов анализируемого вещества. При флуоресцентном варианте метода измеряют поток квантов рентгеновской флуоресценции, энергия которых характеризует химический элемент, а интенсивность - его содержание. Абсорбционный вариант предусматривает регистрацию ослабления образцом двух рентгеновских потоков с близкими энергиями. Отношение интенсивностей потоков, прошедших через образец, характеризует содержание определяемого элемента.
Метод РРА позволяет проводить элементный анализ смесей и поверхностных слоев твердых тел. Предел обнаружения 10-4-10-10 %, длительность определения - в пределах 10 мин. РРА анализаторы были применены для исследования элементного состава пород на Луне и Венере.
К числу методов рентгеновской спектроскопии можно отнести метод, находящийся на стыке рентгеновской и электронной спектроскопии.
Рентгеноэлектронная спектроскопия (РЭС), или электронная спектроскопия для химического анализа (ЭСХА), позволяет изучать электронное строение химических соединений, состав и структуру поверхностного слоя твердых тел с помощью фотоэффекта, вызванного рентгеновским излучением. Анализ кинетической энергии вылетающих из образца электронов дает информацию об элементном составе образца, распределении химических элементов на его поверхности, природе химических связей и других взаимодействиях атомов в образце.
В электронных спектрометрах на образец обычно воздействуют излучением рентгеновской трубки. Электроны е, выбитые рентгеновским квантом попадают в электронный энергоанализатор, который разделяет их по энергиям. Монохроматические пучки электронов направляют в детектор, измеряющий интенсивность пучков. В результате получают рентгеноэлектронный спектр - распределение рентгеновских фотоэлектронов по кинетическим энергиям Максимумы на нем (спектральные линии) отвечают определенным атомам. Рентгеноэлектронная спектроскопия - один из основных методов определения состава поверхностных слоев тел, его широко используют при изучении адсорбции, катализа, коррозии. Это один из основных методов определения толщины и сплошности монокристаллических тонких пленок.
Рентгеновский структурный анализ
Рентгеновский структурный анализ (РСА) - совокупность методов изучения атомной структуры вещества, главным образом кристаллов, с помощью дифракции рентгеновских лучей. В его основе лежит взаимодействие рентгеновского излучения c электронами исследуемого вещества, в результате чего возникает дифракция. Ее параметры зависят от длины волны используемого излучения и атомного строения объекта. По дифракционной картине устанавливают распределение электронной плотности вещества, а по ней - вид атомов и их расположение в кристаллической решетке. Для исследования атомной структуры применяют излучения с длиной волны ~ 0,1 нм, т.е. порядка размеров атома.
С 1950-х годов при обработке рентгеновских дифрактограмм стали применять ЭВМ.
Для рентгеновского структурного анализа применяют рентгеновские камеры, дифрактометры и гониометры.
Рентгеновская камера - прибор для исследования и контроля атомной структуры веществ, в котором используется излучение рентгеновской трубки и создаются условия дифракции рентгеновских лучей на образце, а дифракционная картина регистрируется на фотопленке.
Рентгеновский дифрактометр - прибор для рентгеновского структурного анализа, который укомплектован фотоэлектрическими приемниками излучения. С его помощью измеряют интенсивность и направление дифракционных рентгеновских пучков.
Рентгеновский гониометр - прибор для рентгеновского структурного анализа, регистрирующий одновременно направление дифракционных лучей и положение образца.
Рассеянное рентгеновское излучение фиксируют на фотопленке или измеряют с помощью детекторов ядерных излучений, которые основаны на явлениях, возникающих при прохождении заряженных частиц через вещество. Для регистрации образующихся частиц применяют ионизационные камеры, счетчики, полупроводниковые детекторы, а для визуального наблюдения и фотографирования следов (треков) частиц - трековые детекторы (ядерные фотоэмульсии, пузырьковые и искровые камеры и др.). Дифракционную картину можно создать несколькими способами. Их выбор определяется физическим состоянием и свойствами образца, а также объемом информации, которую нужно получить о нем.
Метод Лауэ - простейший метод получения рентгенограмм от монокристаллов: образец закреплен неподвижно, рентгеновское излучение имеет непрерывный спектр. Рентгенограмма, содержащая дифракционное изображение монокристалла, названа лауэграммой. Расположение на ней дифракционных пятен зависит от симметрии кристалла и его ориентации относительно первичного пучка. По проявлению астеризма - размытия в определенных направлениях дифракционных пятен на лауэграммах - выявляют напряжения в образце и некоторые дефекты кристалла.
Методы качания и вращения образца используют для определения параметров элементарной ячейки в кристалле. Дифракционную картину, создаваемую монохроматическим излучением, регистрируют на рентгеновской пленке, находящейся в цилиндрической кассете, ось которой совпадает с осью колебания образца. Дифракционные пятна на развернутой пленке располагаются на семействе параллельных линий. Зная расстояние между ними, диаметр кассеты и длину волны излучения, вычисляют параметры кристаллической ячейки.
Рентгенгониометрические методы предназначены для измерения параметров дифракционных отражений от кристалла при всех возможных его ориентациях. Интенсивность отражений определяют: фотографически, измеряя микрофотометром степень черноты каждого пятна на рентгенограмме; непосредственно с помощью счетчиков рентгеновских квантов.
Серию рентгенограмм получают в рентгеновских гониометрах. На каждой из них зафиксированы дифракционные отражения, кристаллографические индексы которых имеют определенные ограничения. При изучении структуры, состоящей из ~ 50-100 атомов, необходимо измерить интенсивность порядка 100-1000 дифракционных отражений. Эту трудоемкую и кропотливую работу выполняют с помощью многоканальных дифрактометров, управляемых компьютером.
Метод Дебая-Шеррера исследования поликристаллов состоит в регистрации рассеянного излучения на фотопленке (дебаеграмма) в цилиндрической рентгеновской камере. Дебаеграмма поликристалла представляет собой несколько концентрических колец и позволяет идентифицировать химические соединения, определять фазовый состав образцов, размеры и текстурирование зерен, контролировать напряжения в образце.
Метод малоуглового рассеяния позволяет обнаружить в конденсированных телах пространственные неоднородности, размеры которых (от 0,5 до 103 нм) превышают межатомные расстояния. Метод малоуглового рассеяния применяют для изучения нанокомпозитов, металлических сплавов и сложных биологических объектов. Он оказался эффективным для промышленного контроля катализаторов.
Рентгеновская топография, которую иногда относят к методам рентгеновского структурного анализа, позволяет исследовать дефекты в строении почти совершенных кристаллов путем изучения дифракции на них рентгеновских лучей. Осуществляя дифракцию рентгеновских лучей на кристаллах «на просвет» и «на отражение» в специальных рентгеновских камерах, регистрируют дифракционные изображения кристалла - топограмму. Расшифровывая её, получают информацию о дефектах в кристалле. Линейное разрешение методов рентгеновской топографии составляет от 20 до 1 мкм, угловое разрешение - от 1" до 0,01""
По результатам их рентгеновского структурного анализа возможно определение атомной структуры кристаллов.
Анализ дифракции рентгеновских лучей позволяет, кроме того, определить количественные характеристики тепловых колебаний атомов в кристалле и пространственное распределение в нем электронов. Методами Лауэ и качания образца измеряют параметры кристаллической решетки. При изучении монокристалла по углам дифракции устанавливают форму и размеры элементарной ячейки кристалла. По закономерному отсутствию некоторых отражений судят о пространственной группе симметрии. По интенсивности отражений рассчитывают абсолютные значения структурных амплитуд, по которым судят о тепловых колебаниях атомов. Расчеты проводят с помощью компьютера.
Для решения многих задач физики, химии, молекулярной биологии и др. эффективно совместное использование методов рентгеноструктурного анализа и резонансных методов (ЭПР, ЯМР и др.).
Рентгеновский фазовый анализ
Рентгеновский фазовый анализ - метод качественного и количественного определения фазового состава поликристаллических материалов, основанный на изучении дифракции рентгеновских лучей.
Качественный рентгеновский фазовый анализ направлен на определение расстояния между параллельными кристаллографическими плоскостями. По его величине идентифицируют химическую природу исследуемой кристаллической фазы, сравнивая полученное значение с известными значениями этого расстояния для индивидуальных фаз. Фазу считают установленной при наличии на дифрактограмме трех ее самых интенсивных пиков и примерного соответствия отношения их интенсивностей справочным данным.
Количественный рентгеновский фазовый анализ смеси двух фаз основан на зависимости отношения интенсивностей дифракционных пиков этих фаз от отношения их концентраций Погрешность количественного определения фазы этим методом составляет примерно 2 %.
Размещено на Allbest.ru
...Подобные документы
Инструментальные методы исследования в медицине с применением аппаратов, приборов и инструментов. Использование рентгеновских лучей в диагностике. Рентгенологическое исследование желудка и двенадцатиперстной кишки. Способы подготовки к исследованию.
презентация , добавлен 14.04.2015
История открытия рентгеновских лучей немецким физиком Вильгельмом Рентгеном. Процесс получение рентгеновского излучения, его применение в медицинских исследованиях. Современные разновидности рентгенодиагностики. Компьютерная рентгеновская томография.
презентация , добавлен 22.04.2013
Биография и научная деятельность В.К. Рентгена, история открытия им Х-лучей. Характеристика и сравнение двух основных методов в медицинской рентгенодиагностике: рентгеноскопии и рентгенографии. Исследование органов желудочно-кишечного тракта и легких.
реферат , добавлен 10.03.2013
Характеристика лабораторной диагностики вирусных инфекций при помощи электронной микроскопии. Подготовка срезов пораженной ткани к исследованию. Описание метода иммуноэлектронной микроскопии. Иммунологические методы исследования, описание хода анализа.
курсовая работа , добавлен 30.08.2009
Проведение общего анализа мокроты – исследования для первичной оценки состояния бронхов и легких. Сбор и анализ мокроты. Основные факторы, влияющие на результат исследования. Микроскопия, бактериоскопия и посев мокроты. Исследование физических свойств.
реферат , добавлен 05.11.2010
Ознакомление с историей открытия рентгеновских лучей. Развитие данной диагностики в Германии, Австрии, России. Устройство и принцип работы рентгеновской трубки, свойства лучей. Устройство рентгеновского аппарата, соответственного отделения (кабинета).
презентация , добавлен 10.02.2015
Ориентировочный и количественный метод исследования осадка мочи. Расчет суточного количества форменных элементов. Неизмененные и измененные эритроциты. Гиалиновые и зернистые цилиндры. Клетки многослойного плоского эпителия. Кристалл оксалата кальция.
презентация , добавлен 14.04.2014
Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.
презентация , добавлен 21.11.2013
Эналаприл: основные свойства и механизм получения. Инфракрасная спектроскопия как метод идентификации эналаприла. Методы испытания на чистоту данного лекарственного вещества. Фармакодинамика, фаармакокинетика, применение, и побочные эффекты эналаприла.
реферат , добавлен 13.11.2012
Цитогенетические методы исследования. Показания к диагностике наследственной патологии. Метод геномной гибридизации. Цитогенетическая локализация последовательностей ДНК. Основные показания у новорожденных и у детей. Магнитная резонансная спектроскопия.
Пневмония рентген требует в обязательном порядке. Без этого вида исследования вылечить человека удастся только чудом. Дело в том, что пневмония может быть вызвана различными возбудителями, которые поддаются только специальной терапии. Рентген помогает определить, подходит ли конкретному больному назначенное лечение. Если ситуация усугубляется, методы терапии корректируются.
Методы исследования рентгеном
Выделяют ряд способов исследования с помощью рентгена, их основное отличие - методика фиксирования полученного изображения:
- рентгенография - изображение фиксируется на специальной пленке прямым попаданием на нее рентгеновских лучей;
- электрорентгенография - картинка передается на специальные пластины, с которых можно перенести ее на бумагу;
- рентгеноскопия - метод, позволяющий получить изображение исследуемого органа на флюоресцентном экране;
- рентгенотелевизионное исследование - результат выводится на экран телевизора благодаря персональной теле-системе;
- флюорография - изображение получается путем фотографирования выведенной картинки на экран на фотопленку маленького формата;
- цифровая рентгенография - графическое изображение передается на цифровой носитель.
Более современные методы рентгенографии позволяют получить более качественное графическое изображение анатомических структур, что способствует более точному диагностированию, а значит, назначению правильного лечения.
Чтобы провести рентген некоторых органов человека используется метод искусственного контрастирования. Для этого исследуемый орган получает дозу специального вещества, поглощающего лучи рентгена.
Виды исследований рентгеном
В медицине показания к рентгенографии состоят в диагностики различных заболеваний, уточнения формы данных органов, места их расположения, состояния слизистых оболочек, перистальтики. Выделяют следующие виды рентгенографии:
- позвоночника;
- грудной клетки;
- периферические отделы скелета;
- зубов - ортопантомография;
- полости матки - метросальпингография ;
- молочной железы - маммография ;
- желудка и двенадцатиперстной кишки - дуоденография;
- желчного пузыря и желчевыводящих путей - холецистография и холеграфия соответственно;
- толстой кишки - ирригоскопия.
Показания и противопоказания к проведению исследования
Рентген может назначаться врачом для визуализации внутренних органов человека с целью установления возможных патологий. Существуют следующие показания к рентгенографии:
- необходимость установить поражения внутренних органов и скелета;
- проверка корректности установки трубок и катетеров;
- контроль эффективности и результативности курса терапии.
Как правило в медицинских заведениях, где сделать рентгенографию можно, пациент опрашивается на предмет возможных противопоказаний процедуры.
К ним относятся:
- персональная повышенная чувствительность к йоду;
- патология щитовидной железы;
- травмы почек или печени;
- туберкулез в активной форме;
- проблемы кардиологической и кровеносной систем;
- повышенное коагулирование крови ;
- тяжелое состояние пациента;
- состояние беременности.
Преимущества и недостатки способа
Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.
Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.
В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.
Лекция № 2.
Перед врачом любой специальности, после обращения больного, стоят следующие задачи:
Определить норма это или патология,
Затем установить предварительный диагноз и
Определить порядок обследования,
После чего поставить окончательный диагноз и
Назначить лечение, а по завершении которого обязательно
Проконтролировать результаты лечения.
Наличие патологического очага искусный врач устанавливает уже на основании анамнеза и осмотра больного, для подтверждения он использует лабораторные, инструментальные и лучевые методы обследования. Знания возможностей и основ интерпретации различных методов визуализации позволяют врачу правильно определить порядок обследования. В конечном результате – это назначение наиболее информативного обследования и верно установленный диагноз. В настоящее время до 70% информации о патологическом очаге выдает лучевая диагностика.
Лучевая диагностика - это наука о применении различных видов излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека.
Основная цель лучевой диагностики: ранее выявление патологических состояний, правильная их интерпретация, а также, контроль за процессом, восстановления морфологических структур и функций организма в ходе лечения.
В основе данной науки лежит шкала электромагнитных и звуковых волн, которые расположены в следующем порядке - звуковые волны (в том числе УЗ-волны), видимый свет, инфракрасное, ультрафиолетовое, рентгеновское и гамма-излучение. Необходимо отметить, что звуковые волны относятся к механическим колебаниям, для передачи которых необходима какая-либо среда.
При помощи данных лучей решаются следующие диагностические задачи: уточнение наличия и распространенности патологического очага; изучение размеров, структуры, плотности и контуров образования; определение взаимоотношения выявленных изменений с окружающими морфологическими структурами и уточнение возможного происхождения образования.
Выделяют две разновидности лучей: ионизирующие и неионизирующие. К первой группе относят электромагнитные волны, с короткой длиной волны, способные вызывать ионизацию тканей они лежат в основе рентгеновской и радионуклидной диагностики. Вторая группа лучей считается безвредной и формирует МР-томографию, УЗ-диагностику и термографию.
Более 100 лет человечество знакомо с физическим явлением – лучами особого рода, обладающими проникающей способностью и названными в честь ученого, открывшего их, рентгеновскими
Эти лучи открыли новую эпоху в развитии физики и всего естествознания, помогли проникнуть в тайны природы и строение материи, оказали существенное влияние на развитие техники, привели к революционным преобразованиям в медицине.
8 ноября 1895 г. профессор физики Вюрцбургского университета Вильгельм Конрад Рентген (1845-1923) обратил внимание на удивительное явление. Изучая в своей лаборатории работу электровакуумной (катодной) трубки, он заметил, что при подаче электрического тока высокого напряжения на ее электроды, появилось зеленоватое свечение находящегося рядом платино-синеродистого бария. Такое свечение люминофоров было к тому времени уже известно. Подобные трубки изучались во многих лабораториях мира. Но на столе Рентгена во время опыта трубка была плотно завернута в черную бумагу, и, хотя платино-синеродистый барий находился на значительном расстоянии от трубки, его свечение возобновлялось при каждой подаче электрического тока в трубку. Он пришел к выводу, что в трубке возникают какие-то неизвестные науке лучи, обладающие способностью проникать через твердые тела и распространяющиеся в воздухе на расстояние, измеряемое метрами.
Рентген закрылся в своей лаборатории и, не выходя из нее на протяжении 50 суток, изучал свойства открытых им лучей.
Первое сообщение Рентгена «О новом виде лучей» было опубликовано в январе 1896 года в виде кратких тезисов, из которых стало известно, что открытые лучи способны:
Проникать в той или иной степени через все тела;
Вызывать свечение флюоресцирующих веществ (люминофоров);
Вызывать почернение фотопластинок;
Снижать свою интенсивность обратно пропорционально квадрату расстояния от их источника;
Распространяться прямолинейно;
Не изменять своего направления под воздействием магнита.
Весь мир был потрясен и взволнован этим событием. В короткий срок сведения об открытии Рентгена стали публиковать не только научные, но и общие журналы и газеты. Людей поражало то, что появилась возможность с помощью этих лучей заглянуть внутрь живого человека.
С этого времени для врачей наступила новая эра. Многое из того, что раньше они могли увидеть только на трупе, теперь они наблюдали на снимках и флюоресцирующих экранах. Появилась возможность изучать работу сердца, легких, желудка и других органов живого человека. У больных людей стали выявлять те или иные изменения по сравнению со здоровыми. Уже в течение первого года после открытия икс-лучей в печати появились сотни научных сообщений, посвященных исследованию органов человека с их помощью.
Во многих странах появились специалисты - рентгенологи. Новая наука - рентгенология шагнула далеко вперед, были разработаны сотни различных методик рентгенологического исследования органов и систем человека. За сравнительно короткий период рентгенология сделала столько, сколько не сделала ни одна другая наука в медицине.
Рентген первым среди физиков был удостоен Нобелевской премии, которая была вручена ему в 1909 г. Но ни сам Рентген, ни первые рентгенологи не подозревали о том, что эти лучи могут быть смертельно опасны. И только когда врачи, начали болеть лучевой болезнью в различных ее проявлениях, встал вопрос о защите больных и персонала.
Современные рентгеновские комплексы, предусматривают максимальную защиту: трубка расположена в кожухе со строгим ограничением рентгеновского пучка (диафрагмирование) и множество дополнительных защитных мер (фартуки, юбочки и воротники). В качестве контроля «невидимого и неосязаемого» излучения используют различные контролирующие методы, сроки проведения контрольных обследований строго регламентированы Приказами МЗ.
Методы измерения излучения: ионизационный – ионизационные камеры, фотографический – по степени почернения фотопленки, термолюминесцентный – при помощи люминофоров. Каждый работник рентгеновского кабинета подлежит индивидуальной дозиметрии, которая проводится ежеквартально при помощи дозиметров. Индивидуальная защита пациентов и персонала является неукоснительным правилом при проведении исследований. В состав защитных изделий ранее входил свинец, который из-за своей токсичности в настоящее время заменен на редкоземельные металлы. Эффективность защиты стала выше, а вес приспособлений значительно уменьшился.
Все выше перечисленное позволяет свести к минимуму отрицательное воздействие ионизирующих волн на организм человека, однако вовремя выявленные туберкулез или злокачественная опухоль во много раз перевесят «негативные» последствия, сделанного снимка.
Основными элементами рентгенологического исследования являются: излучатель - электровакуумная трубка; объект исследования - человеческий организм; приемник излучения – экран или пленка и естественно ВРАЧ-РЕНТГЕНОЛОГ, который интерпретирует полученные данные.
Рентгеновское излучение является электромагнитным колебанием, искусственно создаваемое в специальных электровакуумных трубках на анод и катод которой, посредством генераторного устройства подается высокое (60-120 киловольт) напряжение, а защитный кожух, направленный пучок и диафрагма позволяют максимально ограничить поле облучения.
Рентгеновские лучи относятся к невидимому спектру электромагнитных волн с длиной волны от 15 до 0,03 ангстрем. Энергия квантов в зависимости от мощности аппаратуры колеблется от 10 до 300 и более Кэв. Скорость распространения квантов рентгеновского излучения 300 000 км/сек.
Рентгеновские лучи обладают определенными свойствами, которые обуславливают применение их в медицине для диагностики и лечения различных заболеваний.
- Первое свойство – проникающая способность, способность проникать сквозь твердые и непрозрачные тела.
- Второе свойство – их поглощение в тканях и органах, которое зависит от удельного веса и объема тканей. Чем плотнее и объемнее ткань, тем большее поглощение лучей. Так, удельный вес воздуха равен 0,001, жира 0,9, мягких тканей 1,0, костной ткани – 1,9. Естественно, в костях будет наибольшее поглощение рентгеновского излучения.
- Третье свойство рентгеновых лучей – способность их вызывать свечение флюоресцирующих веществ, используемое при проведении просвечивания за экраном рентгенодиагностического аппарата.
- Четвертое свойство – фотохимическое, благодаря чему на рентгеновской фотопленке получается изображение.
- Последнее, пятое свойство – биологическое (отрицательное) действие рентгеновых лучей на организм человека, которое используется в благих целях, т.н. лучевая терапия.
Рентгенологические методы исследования выполняются с помощью рентгеновского аппарата, в устройство которого входит 5 основных частей:
Рентгеновский излучатель (рентгеновская трубка с системой охлаждения);
Питающее устройство (трансформатор с выпрямителем электрического тока);
Приемник излучения (флюоресцирующий экран, кассеты с пленкой, полупроводниковые датчики);
Штативное устройство и стол для укладки пациента;
Пульт управления.
Основной частью любого рентгенодиагностического аппарата является рентгеновская трубка, которая состоит из двух электродов: катода и анода. На катод подается постоянный электрический ток, который накаливает нить катода. При подаче высокого напряжения на анод электроны в результате разности потенциалов с большой кинетической энергией летят с катода и тормозятся на аноде. При торможении электронов и происходит образование рентгеновских – тормозных лучей, выходящих под определенным углом из рентгеновской трубки. Современные рентгеновские трубки имеют вращающийся анод, скорость которого достигает 3000 оборотов в минуту, что значительно снижает разогрев анода и повышает мощность и срок службы трубки.
Регистрация ослабленного рентгеновского излучения и лежит в основе рентгенодиагностики.
Рентгеновский метод включает следующие методики:
- рентгеноскопию, то есть получение изображения на флюоресцирующем экране (усилители рентгеновского изображения – посредством телевизионного тракта);
- рентгенографию – получение изображения на рентгеновской пленке, помещенной в рентгенопрозрачную кассету, где она защищена от обычного света.
- дополнительные методики включают: линейную томографию, флюорографию, рентгеноденситометрию и др.
Линейная томография – получение послойного изображения на рентгеновской пленке.
Объект исследования, как правило, какая либо область человеческого организма, которые имеют различную плотность. Это и воздухосодержащиие ткани (легочная паренхима), и мягкотканые (мышцы, паренхиматозные органы и ЖКТ), и костные структуры с высоким содержанием кальция. Что и обуславливает возможность обследования в условиях как естественного контрастирования, так и с применением искусственного контрастирования, для чего имеются различные виды контрастных препаратов.
Для ангиографии и визуализации полых органов в рентгенологии широко применяются контрастные вещества, задерживающие рентгеновские лучи: при исследованиях ЖКТ – сульфат бария (per os) нерастворим в воде, водорастворимые – для внутрисосудистых исследований, мочеполовой системы и фистулографии (урографин, ультравист и омнипак), а также жирорастворимые для бронхографии - (йодлипол).
Вот краткий обзор сложной электронной системы рентгеновского аппарата. В настоящее время разработаны десятки разновидностей рентгеновского оборудования от аппаратов общего профиля до узкоспециализированных. Условно их можно подразделить на: стационарные рентгенодиагностические комплексы; передвижные аппараты (для травматологии, реанимации) и флюорографические установки.
Туберкулез в России принял к настоящему времени размах эпидемии, неуклонно растет и онкологическая патология, для выявления этих заболеваний осуществляется скрининговая ФЛГ.
Все взрослое население РФ обязано один раз в 2 года проходить флюорографическое обследование, а декретированные группы должны обследоваться ежегодно. Ранее данное исследование почему-то называлось «профилактическим» обследованием. Выполненный снимок не может предотвратить развитие болезни, он лишь констатирует наличие или отсутствие заболевания легких, а цель его - выявление ранних, бессимптомных стадий туберкулеза и рака легкого.
Выделяют средне-, крупноформатную и цифровую флюорографию. Флюорографические установки выпускаются промышленностью в виде стационарных, и передвижных (установленные на автомобиль) кабинетов.
Особый раздел - обследование больных, которых невозможно доставить в диагностический кабинет. Это преимущественно реанимационные и травматологические пациенты, находящиеся либо на искусственной вентиляции легких, либо на скелетном вытяжении. Специально для этого выпускаются передвижные (мобильные) рентгеновские аппараты, состоящие из генератора и излучателя небольшой мощности (для уменьшения веса), которые можно доставить непосредственно к постели больного.
Стационарные аппараты, предназначены для исследования различных областей в различных проекциях с использованием дополнительных приспособлений (томографические приставки, компрессионные пояса и т.д.). Рентгенодиагностический кабинет состоит из: процедурного кабинета (место проведения исследования); пультовой комнаты, где осуществляется управление аппаратом и фотолаборатории для обработки рентгеновской пленки.
Носителем полученной информации является радиографическая пленка, именуемая рентгеновской, с высокой разрешающей способностью. Она выражается обычно числом раздельно воспринимаемых параллельных линий на 1 мм. Выпускается различных форматов от 35х43см., для исследования грудной клетки или брюшной полости, до 3х4см., для выполнения снимка зуба. Перед выполнением исследования пленка помещается в рентгеновские кассеты с усиливающими экранами, которые позволяют значительно снизить рентгеновскую дозу.
Существуют следующие разновидности рентгенографии:
Обзорные и прицельные снимки;
Линейная томография;
Специальные укладки;
С применением контрастных препаратов.
Рентгенография позволяет изучить морфологическое состояние какого либо органа или части организма на момент исследования.
Для изучения функции применяется рентгеноскопия – осмотр в режиме реального времени при просвечивании рентгеновскими лучами. Используется в основном при исследованиях ЖКТ с контрастированием просвета кишечника, реже как уточняющее дополнение при заболеваниях легких.
При обследовании органов грудной клетки рентгеновский метод является «золотым стандартом» диагностики. На рентгенограмме органов грудной клетки выделяют легочные поля, срединную тень, костные структуры и мягкотканный компонент. В норме легкие должны быть одинаковой прозрачности.
Классификация рентгенологических симптомов:
1. Нарушение анатомических соотношений (сколиоз, кифоз, аномалии развития); изменения площади легочных полей; расширение или смещение срединной тени (гидроперикард, опухоль средостения, изменение высоты стояния купола диафрагмы).
2. Следующий симптом – «затемнение или снижение пневматизации», обусловленные уплотнением легочной ткани (воспалительная инфильтрация, ателектаз, периферический рак) либо скоплением жидкости.
3. Симптом просветления характерен для эмфиземы легких и пневмоторакса.
Костно-суставная система обследуется в условиях естественной контрастности и позволяет выявлять множество изменений. Необходимо помнить о возрастных особенностях:
до 4 недель – костных структур нет;
до 3 месяцев – формирование хрящевого скелета;
4-5 месяцев до 20 лет формирование костного скелета.
Разновидности костей – плоские и трубчатые (короткие и длинные).
Каждая кость состоит из компактного и губчатого вещества. Компактное костное вещество, или кортикальный слой, в различных костях имеет разную толщину. Толщина кортикального слоя длинных трубчатых костей убывает от диафиза к метафизу и наиболее истончена в эпифизах. В норме кортикальный слой дает интенсивное, гомогенное затемнение и имеет четкие, гладкие контуры, определяемые же неровности строго соответствуют анатомическим буграм, гребням.
Под компактным слоем кости находится губчатое вещество, состоящее из сложного переплета костных трабекул, расположенных по направлению действия на кость сил сжатия, растяжения и кручения. В отделе диафиза, имеется полость - костномозговой канал. Таким образом, губчатое вещество остается лишь в эпифизах и метафизах. Эпифизы у растущих костей отделяются от метафизов светлой поперечной полоской росткового хряща, который иногда принимают за линию перелома.
Суставные поверхности костей покрыты суставным хрящом. Суставной хрящ на рентгенограмме не дает тени. Поэтому между суставными концами костей имеется светлая полоса - рентгеновская суставная щель.
С поверхности кость покрыта надкостницей, представляющей соединительнотканую оболочку. Надкостница в норме на рентгенограмме не дает тени, но в патологических условиях она нередко обызвествляется и окостеневает. Тогда вдоль поверхности кости обнаруживают линейные или другой формы тени периостальных реакций.
Выделяют следующие рентгенологические симптомы:
Остеопороз - патологическая перестройка костной структуры, которая сопровождается равномерным уменьшением количества костного вещества в единице объема кости. Для остеопороза типичны следующие рентгенологические признаки: уменьшение количества трабекул в метфизах и эпифизах, истончение кортикального слоя и расширение костномозгового канала.
Остеосклероз отличается признаками, противоположными остеопорозу. Для остеосклероза характерно увеличение количества обызвествленных и окостеневших элементов кости, число костных трабекул увеличивается, и их на единицу объема приходится больше, чем в нормальной кости, а тем самым костномозговые пространства уменьшаются. Все это ведет и к рентгенологическим симптомам, противоположным остеопорозу: кость на рентгенограмме более уплотнена, кортикальный слой утолщен, контуры его как со стороны надкостницы, так и со стороны костномозгового канала неровные. Костномозговой канал сужен, а иногда совсем не просматривается.
Деструкция или остеонекроз - медленно протекающий процесс с нарушением структуры целых участков кости и заменой ее гноем, грануляциями или опухолевой тканью.
На рентгенограмме очаг деструкции выглядит как дефект в кости. Контуры свежих деструктивных очагов неровные, контуры же старых очагов становятся ровными и уплотненными.
Экзостозы - патологические костные образования. Экзостозы возникают или в результате доброкачественного опухолевого процесса, или в результате аномалии остеогенеза.
Травматические повреждения (переломы и вывихи) костей возникают при резком механическом воздействии, превышающем эластическую возможность кости: сжатии, растяжении, сгибании и сдвиге.
Рентгенологическое исследование органов брюшной полости в условиях естественной контрастности применяется, в основном, в неотложной диагностике – это свободный газ в брюшной полости, кишечная непроходимость и рентгенконтрастные конкременты.
Ведущую роль занимает исследования желудочно-кишечного тракта, которое позволяет выявлять разнообразные опухолевые и язвенные процессы, поражающие слизистую ЖКТ. В качестве контрастного препарата применяется водная взвесь сульфата бария.
Разновидности обследования следующие: рентгеноскопия пищевода; рентгеноскопия желудка; пассаж бария по кишечнику и ретроградное исследование толстой кишки (ирригоскопия).
Основные рентгенологические симптомы: симптом локального (диффузного) расширения или сужения просвета; симптом язвенной ниши – в случае, когда контрастное вещество распространяется за границу контура органа; и так называемый дефект наполнения, который определяется в случаях, когда контрастное вещество не заполняет анатомические контуры органа.
Необходимо помнить, что ФГС и ФКС в настоящее время занимают главенствующее место в обследованиях ЖКТ, их недостатком является невозможность выявления образований расположенных в подслизистом, мышечном и далее слоях.
Большинство врачей обследуют больного по принципу от простого к сложному – выполняя на первом этапе «рутинные» методики, а затем дополняют более сложными исследованиями, вплоть до высокотехнологичных КТ и МР-томографии. Однако сейчас преобладает мнение о выборе наиболее информативного метода, например при подозрении на опухоль мозга нужно делать МРТ, а не снимок черепа на котором будут видны кости черепа. В тоже время паренхиматозные органы брюшной полости прекрасно визуализируются УЗ-методом. Клиницист должен знать основные принципы комплексного лучевого обследования для частных клинических синдромов, а врач диагност будет Ваш консультант и помощник!
Это исследования органов грудной клетки, преимущественно легких, костно-суставной системы, желудочно-кишечного тракта и сосудистой системы, при условии констрастирования последних.
Исходя из возможностей будут определены показания и противопоказания. Абсолютных противопоказаний нет!!! Относительными противопоказаниями являются:
Беременность, период лактации.
Во всяком случае, необходимо стремится к максимальному ограничению лучевой нагрузки.
юбой врач практического здравоохранения неоднократно отправляет больных на рентгенологическое обследование, в связи с чем, существуют правила оформления направления на исследование:
1. указывается фамилия и инициалы больного и возраст;
2. назначается вид исследования (ФЛГ, рентгеноскопия или рентгенография);
3. определяется область обследования (органы грудной или брюшной полости, костно-суставной системы);
4. указывается количество проекций (обзорный снимок, две проекции или специальная укладка);
5. необходимо обязательно поставить перед врачом диагностом цель исследования (исключить пневмонию или перелом бедра, например);
6. дата и подпись врача, выписавшего направление.