Рибонуклеиновая кислота представляет собой сополимер пуриновых и пиримидиновых рибонуклеотидов, соединенных друг с другом, как и в ДНК, -фосфодиэфирными мостиками (рис. 37.6). Хотя эти два вида нуклеиновых кислот имеют много общего, по ряду признаков они отличаются друг от друга.
1. У РНК углеводным остатком, к которому присоединены пуриновые или пиримидиновые основания и фосфатные группы, является рибоза, а не 2-дезоксирибоза (как у ДНК).
2. Пиримидиновые компоненты РНК отличаются от таковых у ДНК. В состав РНК, как и в состав ДНК, входят нуклеотиды аденина, гуанина и цитозина. В то же время РНК (за исключением некоторых специальных случаев, на которых мы остановимся ниже) не содержит тимина, его место в молекуле РНК занимает урацил.
3. РНК - одноцепочечная молекула (в отличие от ДНК, имеющей двухцепочечную структуру), однако при наличии в цепи РНК участков с комплементарной последовательностью (противоположной полярности) единичная цепь РНК способна сворачиваться с образованием так называемых «шпилек», структур, имеющих двухспиральные характеристики (рис. 37.7).
Рис. 37.6. Фрагмент молекулы рибонуклеиновой кислоты (РНК), в котором пуриновые и пиримидиновые основания- аденин (А), урацил (U), цитозин (С) и гуанин (-удерживаются фосфодиэфирным остовом, соединяющим рибозильные остатки, связанные N-гликозидной связью с соответствующими нуклеиновыми основаниями. Обратите внимание: цепь РНК обладает определенной направленностью, на которую указывают 5- и З-концевые фосфатные остатки.
4. Так как молекула РНК представляет собой одиночную цепь, комплементарную только одной из цепей ДНК, содержание в ней гуанина не обязательно равно содержанию цитозина, а содержание аденина не обязательно равно содержанию урацила.
5. РНК может быть гидролизована щелочью до 2, З-циклических диэфиров мононуклеотидов; в роли промежуточного продукта гидролиза выступает 2, У, 5-триэфир, который не образуется при щелочном гидролизе ДНК из-за отсутствия у последней 2-гидроксильных групп; щелочная лабильность РНК (сравнительно с ДНК) является полезным свойством как для диагностических, так и для аналитических целей.
Информация, содержащаяся в одноцепочечной РНК, реализуется в виде определенной последовательности пуриновых и пиримидиновых оснований (т. е. в первичной структуре) полимерной цепи. Эта последовательность комплементарна кодирующей цепи гена, с которой «считывается» РНК. Вследствие комплементарности молекула РНК способна специфически связываться (гибридизоваться) с кодирующей цепью, но не гибридизуется с некодирующей цепью ДНК. Последовательность РНК (за исключением замены Т на U) идентична последовательности некодирующей цепи гена (рис. 37.8).
Биологические функции РНК
Известно несколько видов РНК. Почти все они непосредственно вовлечены в процесс биосинтеза белка. Молекулы цитоплазматической РНК, выполняющие функции матриц белкового синтеза, называются матричными РНК (мРНК). Другой вид цитоплазматической РНК-рибосомная РНК (рРНК) - выполняет роль структурных компонентов рибосом (органелл, играющих важную роль в синтезе белка). Адапторные молекулы транспортных РНК (тРНК) участвуют в трансляции (переводе) информации мРНК в последовательность аминокислот в белках.
Значительная часть РНК-первичных транскриптов, образующихся в эукариотических клетках, включая и клетки млекопитающих, - подвергается деградации в ядре и не играет какой-либо структурной или информационной роли в цитоплазме. В культивируемых
Рис. 37.7. Вторичная структура молекулы РНК типа «петли со стеблем» («шпилька»), возникающая вследствие внутримолекулярного образования водородных связей между комплементарными парами нуклеиновых оснований.
клетках человека обнаружен класс малых ядерных РНК которые непосредственно не участвуют в синтезе белка, но могут оказывать влияние на процессинг РНК и общую «архитектуру» клетки. Размеры этих относительно небольших молекул варьируют, последние содержат от 90 до 300 нуклеотидов (табл. 37.3).
РНК является основным генетическим материалом у некоторых вирусов животных и растений. Некоторые РНК-содержащие вирусы никогда не проходят стадию обратной транскрипции РНК в ДНК. Однако для большинства известных вирусов животных, таких, как ретровирусы, характерна обратная транскрипция их РНК-генома, направляемая РНК-зависимой ДНК-полимеразой (обратной транскриптазой) с образованием двухспиральной ДНК-копии. Во многих случаях образующийся двухспиральный ДНК-транскрипт встраивается в геном и в дальнейшем обеспечивает экспрессию генов вируса, а также наработку новых копий вирусных РНК-геномов.
Структурная организация РНК
Во всех эукариотических и прокариотических организмах существуют три основных класса молекул РНК: информационная (матричная или мессенджер) РНК (мРНК), транспортная (тРНК) и рибосомная (рРНК). Представители этих классов отличаются друг от друга размерами, функциями и стабильностью.
Информационная (мРНК) - наиболее гетерогенный в отношении размеров и стабильности класс. Все представители этого класса служат переносчиками информации от гена к белок-синтезирующей системе клетки. Они выполняют роль матриц для синтезируемого полипептида, т. е. определяют аминокислотную последовательность белка (рис. 37.9).
Информационные РНК, особенно эукариотические, обладают некоторыми уникальными структурными особенностями. 5-Конец мРНК «кэпирован» 7-метилгуанозинтрифосфатом, присоединенным к 5-гидроксилу соседнего 2-0-метилрибонуклеозида через остаток трифосфата (рис. 37.10). Молекулы мРНК часто содержат внутренние остатки 6-метиладенина и 2-0-метилированные рибонуклеотиды. Хотя смысл «кэпирования» до конца еще не выяснен, можно предположить, что образующаяся структура 5-конца мРНК используется для специфического узнавания в системе трансляции. Синтез белка начинается на 5"-(кэпированном) конце мРНК. Другой конец большинства молекул мРНК (З-конец) содержит полиаденилатную цепочку из 20-250 нуклеотидов. Специфические функции этого окончательно не установлены. Можно предполагать, что данная структура отвечает за поддержание внутриклеточной стабильности мРНК. Некоторые мРНК, включая гистоновые не содержат poly (А). Наличие poly (А) в структуре мРНК используется для отделения от других видов РНК посредством фракционирования тотальной РНК на колонках с oligo (Т), иммобилизованным на твердом носителе типа целлюлозы. Связывание мРНК с колонкой происходит за счет комплементарных взаимодействий poly (А)-«хвоста» с иммобилизованным oligo (Т).
Рис. 37.8. Последовательность гена и его РНК-транскрипта. Показаны кодирующая и некодирующая цепи, и отмечена их полярность. РНК-транскрипт, имеющий полярность комплементарен кодирующей цепи (с полярностью 3 - 5) и идентичен по последовательности (за исключением замен Т на U) и полярности некодирующей цепи ДНК.
Рис. 37.9. Экспрессия генетической информации ДНК в форме мРНК-транскрипта и последующая трансляция при участии рибосом с образованием специфической молекулы белка.
(см. скан)
Рис. 37.10. Структура «кэпа», находящегося на 5-конце большинства эукариотических матричных РНК 7-метилгуанозинтрифосфат присоединяется к 5-концу мРНК. на котором обычно находится 2-О-метилпуриновый нуклеотид.
В клетках млекопитающих, включая клетки человека, зрелые молекулы мРНК, находящиеся в цитоплазме, не являются полной копией транскрибируемого участка гена. Образующийся в результате транскрипции полирибонуклеотид представляет собой предшественник цитоплазматической мРНК, перед выходом из ядра он подвергается специфическому процессингу. Непроцессированные продукты транскрипции, обнаруживаемые в ядрах клеток млекопитающих, образуют четвертый класс молекул РНК. Такие ядерные РНК очень гетерогенны и достигают значительных размеров. Молекулы гетерогенных ядерных РНК могут иметь молекулярную массу более , в то время как молекулярная масса мРНК обычно не превышает 2106. подвергаются процессингу в ядре, и образующиеся зрелые мРНК поступают в цитоплазму, где служат матрицей для биосинтеза белка.
Молекулы транспортных РНК (тРНК) обычно содержат около 75 нуклеотидов. Молекулярная масса таких молекул составляет . тРНК также формируются в результате специфического процессинга соответствующих молекул-предшественников (см. гл. 39). Транспортные тРНК выполняют функцию посредников в ходе трансляции мРНК. В любой клетке присутствуют не менее 20 видов молекул тРНК. Каждый вид (иногда несколько видов) тРНК соответствует одной из 20 аминокислот, необходимых для синтеза белка. Хотя каждая специфическая тРНК отличается от других нуклеотидной последовательностью, все они имеют и общие черты. Благодаря нескольим внутрицепочечным комплементарным участкам, все тРНК обладают вторичной структурой, получившей название «клеверный лист» (рис. 37.11).
Молекулы всех видов тРНК имеют четыре основных плеча. Акцепторное плечо состоит из «стебля» спаренных нуклеотидов и заканчивается последовательностью ССА Именно через У-гидроксильную группу аденозильного остатка происходит связывание с карбоксильной группой аминокислоты. Остальные плечи тоже состоят из «стеблей», образованных комплементарными парами оснований, и петель из неспаренных оснований (рис. 37.7). Антикодоновое плечо узнает нуклеотидный триплет или кодон (см. гл. 40) в мРНК. D-плечо названо так из-за наличия в нем дигидроуридина, -плечо названо по последовательности Т-псевдоуридин-С. Дополнительное плечо представляет собой наиболее вариабельную структуру и служит основой классификации тРНК. тРНК класса 1 (75% от общего их числа) обладают дополнительным плечом длиной 3-5 пар оснований. Дополнительное плечо у тРНК-молекул класса 2 состоит из 13-21 пар оснований и часто включает неспаренную петлю.
Рис. 37.11. Структура молекулы аминоацил-тРНК, к 3-ССА-концу которой присоединена аминокислота . Указаны внутримолекулярные водородные связи и расположение антикодонового, ТТС- и дигидроурацилового плеч. (From J. D. Watson. Molecular biology of the Gene 3rd, ed.. Copyright 1976, 1970, 1965 by W. A. Benjamin, Inc., Menlo Park Calif.)
Вторичная структура, определяемая системой комплементарных взаимодействий нуклеотидных оснований соответствующих плеч, характерна для всех видов Акцепторное плечо содержит семь пар оснований, -плечо - пять пар оснований, плечо D - три (или четыре) пары оснований.
Молекулы тРНК весьма стабильны у прокариот и несколько менее стабильны у эукариот. Обратная ситуация характерна для мРНК, которая довольно нестабильна у прокариот, а у эукариотических организмов обладает значительной стабильностью.
Рибосомная РНК. Рибосома - это цитоплазматическая нуклеопротеиновая структура, предназначенная для синтеза белка по мРНК-матрице. Рибосома обеспечивает специфический контакт в результате которого и происходит трансляция нуклеотидной последовательности, считанной с определенного гена, в аминокислотную последовательность соответствующего белка.
В табл. 37.2 представлены компоненты рибосом млекопитающих, имеющих молекулярную массу 4,210 6 и скорость седиментации (единиц Сведберга). Рибосомы млекопитающих состоят из двух нуклеопротеиновых субъединиц - большой с
Таблица 37.2. Компоненты рибосом млекопитающих
молекулярной массой (60S), и малой, имеющей молекулярную массу (40S). 608-субъединица содержит 58-рибосомную РНК (рРНК), 5,8S-pPHK и 28S-pPHK, а также более 50 различных полипептидов. Малая, 408-субъединица включает единственную 18S-pPHK и около 30 полипептидных цепей. Все рибосомные РНК, за исключением 5S-PHK, имеют общего предшественника-45S-PHK, локализованную в ядрышке (см. гл. 40). У молекулы 5S-PHK предшественник собственный. В ядрышке происходит упаковка высокометилированных рибосомных РНК с рибосомными белками. В цитоплазме рибосомы достаточно устойчивы и способны осуществлять большое число циклов трансляции.
Небольшие стабильные РНК. В эукариотических клетках обнаружено большое число дискретных, высококонсервативных, небольших и стабильных молекул РНК. Большинство РНК этого типа обнаруживаются в составе рибонуклеопротеинов и локализованы в ядре, цитоплазме или одновременно в обоих компартментах. Размеры этих молекул варьируют от 90 до 300 нуклеотидов, содержание их - 100000-1000000 копий на клетку.
Малые ядерные нуклеопротеиновые частицы (часто называемые snurps - от англ. small nuclear ribonucleic particles), вероятно, играют существенную роль в регуляции экспрессии генов. Нуклеопротеиновые частицы типа U7, по-видимому, участвуют в формировании З-концов гистоновых мРНК. Частицы , вероятно, необходимы для полиаденилирования, a - для удаления интронов и процессинга мРНК (см. гл. 39). Табл. 37.3. суммирует некоторые характеристики небольших стабильных РНК.
Таблица 37.3. Некоторые виды небольших стабильных РНК, обнаруженные в клетках млекопитающих
ЛИТЕРАТУРА
Darnell J. et al. Molecular Cell Biology, Scientific American Books, 1986.
Hunt T. DNA Makes RNA Makes Protein, Elsevier, 1983. Lewin B. Genes, 2nd ed., Wiley, 1985.
Rich A. et al. The chemistry and biology of left-handed Z-DNA, Annu. Rev. Biochem., 1984, 53, 847.
Turner P. Controlling roles for snurps, Nature, 1985, 316, 105. Watson J. D. The Double Helix, Atheneum, 1968.
Watson J. D., Crick F.H.C. Molecular structure of nucleic acids. Nature, 1953, 171, 737.
Zieve G. W. Two groups of small stable RNAs, Cell, 1981, 25, 296.
Различные виды ДНК и РНК - нуклеиновых кислот - это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.
Кратко о строении РНК
Итак, РНК, рибонуклеиновая кислота, - это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу - полинуклеотид. Так образуется первичная структура РНК.
Вторичная структура - образование двойной цепочки - образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.
В рабочей форме молекула РНК образует также третичную структуру - особое пространственное строение, конформацию.
Синтез РНК
Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.
Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.
Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК - промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей - именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.
Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.
Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.
Основные виды РНК и их функции в клетке
Они следующие:
- Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция - перенос генетической информации с ДНК.
- Рибосомная (рРНК), обеспечивающая процесс трансляции - синтез белка на матрице мРНК.
- Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
- Малые РНК - обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
- РНК-геномы - кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.
В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.
Остановимся подробнее на различных видах молекул РНК.
Матричная (информационная) РНК
Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.
РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций - процессинг.
Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов - кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост - последовательность адениновых нуклеотидов.
После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков - интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.
Рибосомная РНК
Основу рибосомы - комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.
В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.
Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной - 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.
Транспортная РНК
Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции - синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.
Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа - акцепторном участке - расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля - для связывания с большой субчастицей рибосомы.
Малые РНК
Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.
Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.
Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система - важная часть иммунного антивирусного ответа клетки.
Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.
РНК-геном
Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными - одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.
Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.
Значение исследования РНК в современной науке
Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.
Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.
Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.
РНК - тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров - нуклеотидов (в данном случае - рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина - урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.
Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80-90%), соединяясь с белками, формируют рибосомы , органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.
Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденностьгенетического кода ). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК.
Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2% от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т.е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими.
Некоторые РНК, подобно ферментам, обладают каталитической активностью. В последние годы был открыт новый класс РНК - т.н. малые РНК. Эти РНК, по-видимому, выполняют в клетках роль универсальных регуляторов, включая и выключая гены при эмбриональном развитии и контролируя внутриклеточные процессы. Полагают, что в процессе биохимической (добиологической) эволюции на Земле первоначально появились молекулы РНК, возможно даже их способные к самовоспроизведению комплексы, и лишь потом возникли более стабильные молекулы ДНК.
Таблица сравнительной характеристики ДНК и РНК
Признаки |
||
1. Биополимеры 2. Участвуют в синтезе белка 3. Сходное строение мономеров: - азотистое основание Молекула пентозы Остаток фосфорной кислоты |
||
Местонахождение |
Содержится, в основном, в ядре, образуя хромосомы, в митохондриях, в пластидах |
В ядрышке, рибосомах, цитоплазме, митохондриях, хлоропластах |
Строение |
Двухцепочечная молекула, образующая спираль. Мономеры - дезоксирибонук-леотиды, в состав которых входят дезоксирибоза, азотистые основания - аденин, тимин, гуанин и цитозин |
Одноцепочечная молекула, мономеры рибонуклеотиды, в состав которых входят - рибоза, азотистые основания - аденин, урацил, гуанин и цитозин |
Свойства |
Способна к самоудвоению - редупликации, по принципу комплементарное™ |
Не способна к самоудвоению |
Химическая основа наследственности. Образует хромосомы, хранение и передача наследственной информации. Кодирует информацию о структуре белка. Наименьшей единицей наследственной информации являются три расположенных рядом нуклеотида - триплет. Является матрицей для синтеза молекул РНК, которая формируется на одной цепочке, по принципу комплементарное™ |
Энергетическая - обеспечивает энергией процессы жизнедеятельности клетки: биосинтез, движение, сокращение мышц, активный перенос веществ через мембрану, и т.п. При отщеплении одной фосфатной группы выделяется 40 кДж |
Молекулы РНК являются полимерами, мономерами которых являются рибонуклеотиды, образованные остатками трех веществ: пятиуглеродного сахара - рибозы; одним из азотистых оснований - из пуриновых - аденином или гуанином , из пиримидиновых - урацилом или цитозином ; остатком фосфорной кислоты.
Молекула РНК представляет собой неразветвленный полинуклеотид, имеющий третичную структуру. Соединение нуклеотидов в одну цепь осуществляется в результате реакции конденсации между остатком фосфорной кислоты одного нуклеотида и 3"-углеродом рибозы второго нуклеотида.
В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой. Однако ее нуклеотиды (адениловый, уридиловый, гуаниловый и цитидиловый) также способны образовывать водородные связи между собой, но это внутри–, а не межцепочечные соединения комплементарных нуклеотидов. Между А- и У-нуклеотидами образуется две водородные связи, между Г- и Ц-нуклеотидами - три водородные связи. Цепи РНК значительно короче цепей ДНК.
Информация о структуре молекулы РНК заложена в молекулах ДНК. Последовательность нуклеотидов в РНК комплементарна кодогенной цепи ДНК, но адениловому нуклеотиду ДНК комплементарен уридиловый нуклеотид РНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.
Существует три основных класса нуклеиновых кислот: информационная (матричная) РНК - иРНК (мРНК), транспортная РНК - тРНК, рибосомальная РНК - рРНК.
Информационные РНК. Наиболее разнообразный по размерам и стабильности класс. Все они являются переносчиками генетической информации из ядра в цитоплазму. Информационные РНК служат матрицей для синтеза молекулы белка, т.к. определяют аминокислотную последовательность первичной структуры белковой молекулы. На долю иРНК приходится до 5% от общего содержания РНК в клетке.
Транспортные РНК. Молекулы транспортных РНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК » 25000. Молекулы тРНК играют роль посредников в биосинтезе белка - они доставляют аминокислоты к месту синтеза белка, в рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме лист клевера.
Рибосомные РНК. На долю рибосомальных РНК (рРНК) приходится 80-85% от общего содержания РНК в клетке. Рибосомная РНК состоит из 3-5 тыс. нуклеотидов. В комплексе с рибосомными белками рРНК образует рибосомы - органеллы, на которых происходит синтез белка. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.
1) Информационная РНК (и-РНК).
2) Рибосомная РНК (р-РНК).
3) Транспортная РНК (т-РНК).
4) Минорные (малые) РНК. Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.
5) Рибозимы. Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).
6) Вирусные РНК. Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК. Рибонуклеиновые кислоты. РНК, строение, структуры, виды, роль. Генетический код. Механизмы передачи генетической информации. Репликация. Транскрипция
Рибосомная РНК.
На долю рРНК приходится 90% всей РНК клетки, она характеризуется метаболической стабильностью. У прокариот различают три различных типа рРНК с коэффициентами седиментации 23S,16S и 5S; у эукариот четыре типа:-28S, 18S,5S и 5,8S.
РНК этого типа локализованы в рибосомах и участвуют в специфическом взаимодействии с рибосомными белками.
Рибосомные РНК имеют форму вторичной структуры в виде которых двуспиральных участков, соединенных изогнутой одиночной цепью. Белки рибосомы связаны преимущественно с однотяжевыми участками молекулы.
Для рРНК характерно наличие модифицированных оснований, однако в значительно меньшем количестве, чем в тРНК. В рРНК присутствуют главным образом метилизированные нуклеотиды, причем метильные группы присоединены либо к основанию, либо к 2 / - OH- группе рибозы.
Транспортная РНК.
Молекулы тРНК представляют собой единую цепь, состоящую из 70-90 нуклеотидов, с молекулярной массой 23000-28000 и константой седиментации 4S. В клеточной РНК транспортная РНК составляет 10-20%. Молекулы тРНК обладают способностью ковалентно связываться с определенной аминокислотой и соединяться через систему водородных связей с одним из нуклеотидных триплетов молекулы мРНК. Таким образом, тРНК реализуют кодовое соответствие между аминокислотой и отвечающим ей кодоном мРНК. Для выполнения адапторной функции тРНК должны иметь вполне определенную вторичную и третичную структуру.
Каждая молекула тРНК обладает постоянной вторичной структурой, имеет форму двумерного клеверного листа и состоит из спиральных участков, образованных нуклеотидами одной и той же цепи, и расположенных между ними одноцепочечных петель. Количество спиральных областей достигает половины молекулы.Неспаренные последовательности образуют характерные структурные элементы (ветви),имеющие типичные ветви:
А) акцепторный стебель, на 3 / -OH конце которого в большинстве случаев расположен триплет ЦЦА. К карбоксильной группе концевого аденозина с помощью специфического фермента присоединяется соответствующая аминокислота;
Б) псевдоуридиновая или Т Ц-петля, состоит из семи нуклеотидов с обязательной последовательностью 5 / -Т ЦГ-3 / , в которой содержится псевдоуридин; предполагается что Т Ц-петля используется для связывания тРНК с рибосомой;
В) дополнительная петля-различная по размеру и составу в разных тРНК;
Г) антикодоновая петля состоит из семи нуклеотидов и содержит группу из трех оснований (антикодон), которая комплементарна триплету (кодону) в молекуле иРНК;
Д) дигидроуридиловая петля (D-петля), состоящая из 8-12 нуклеотидов и содержащая от одного до четырех дигидроуридиловых остатков;считается, что D-петля используется для связывания тРНК со специфическим ферментом (аминоацил-тРНК-синтетаза).
Третичная укладка молекул тРНК является весьма компактной и имеет Г-образную форму. Угол подобной структуры образован дигидроуридиновым остатком и Т Ц-петлей, длинное колено образует акцепторный стебель и Т Ц-петля, а короткое-D-петля и антикодоновая петля.
В стабилизации третичной структуры тРНК участвуют поливалентные катионы (Mg 2+ , полиамины), а также водородные связи между основаниями и фосфодиэфирным остовом.
Сложная постранственная укладка молекулы тРНК обусловлена множественными высокоспецифичными взаимодействиями как с белками, так и с другими нуклеиновыми кислотами (рРНК).
Транспортная РНК отличается от других типов РНК высоким содержанием минорных оснований-в среднем 10-12 оснований на молекулу, однако общее число их а тРНК растет по мере продважения организмов по эволюционной лестнице. В тРНК выявлены различные метилированные пуриновые (аденин, гуанин) и пиримидиновые (5-метилцитозин и рибозилтимин) основания, серосодержащие основания (6-тиоурацил), но наиболее распростран(6-тиоурацил), но наиболее распространенным минорным компонентом является псевдоуридин. Роль необычных нуклеотидов в молекулах тРНК пока не ясна, однако пологают, что чем ниже уровень митилирования тРНК, тем она менее активна и специфична.
Локализация модифицированных нуклеотидов строго фиксирована. Наличие минорных оснований в составе тРНК обуславливает устойчивасть молекул к действию нуклеаз и, кроме того, они участвуют в поддержании определенной структуры, так как подобные основания не способны к нормальному спариванию и препятствуют образованию двойной спирали. Таким образом, наличие модифицированных оснований в составе тРНК обуславливает не только её структуру, но также и многие специальные функции молекулы тРНК.
В большинстве клеток эукариот содержится набор различных тРНК. Для каждой аминокислоты имеется не менее чем по одной специфической тРНК. тРНК связывающие одну и ту же аминокислоту, называют изоакцепторными. Каждый тип клеток в организме отличется своим соотношением изоакцепторных тРНК.
Матричная (информационная)
Матричная РНК содержит генетическую информацию о последовательности аминокислот для основных ферментов и других белков, т.е. служит матицей для биосинтеза полипептидных цепей. На долю мРНК в клетке приходится 5% от общего количества РНК. В отличий от рРНК и тРНК,мРНК гетерогенна по размерам,её молекулярная масса находится в пределах от 25 10 3 до 1 10 6 ; мРНК характеризуется широким диапазоном констант седиментации (6-25S). Наличие в клетке цепи мРНК переменной длинны отражает разнообразие молекулярных масс белков, синтез которых они обеспечивают.
По своему нуклеотидному составу мРНК соответствует ДНК из той же клетки,т.е. является комплементарной к одной из цепи ДНК. В последовательности нуклеотидов (первичная структура) мРНК заложена информация не только о структуре белка, но и о вторичной структуре самих молекул мРНК. Вторичная структура мРНК формируется за счет взаимокомплементарных последовательностей, содержание которых у РНК различного происхождения сходно и состовляет от 40 до 50%. Значительное количество спаренных участков может образовываться в 3 / и 5 / -зонах мРНК.
Анализ 5 / -концов областей 18s рРНК показал,что в них имеются взаимокомплементарные последовательности.
Третичная структура мРНК формируется главным образом за счет водородных связей, гидрофобного взаимодействия, геометрического и стерического ограничения, электрических сил.
Матричная РНК представляет собой метаболически активную и относительно не стабильную, короткоживущую форму. Так, мРНК микроорганизмов характеризуется бысрым обновлением, ивремя жизни её состовляет несколько минут. Вместе с тем для организмов, клетки которых содержат истинные ограниченые мембраной ядра, продолжительность жизни мРНК может достигать многих часов и даже несколько дней.
Стабильность мРНК может определяться различного рода модификациями её молекулы. Так, обнаружено, что 5 / -концевая последовательность мРНК вирусов и эукариот метилирована,или «заблокирована». Первым нуклеотидом в 5 / -терминальной структуре кэпа является 7-метилгуанин, который связан со следующим нуклеотидом 5 / -5 / -пирофосфатной связью. Второй нуклеотид метилирован по C-2 / -рибозного остатка, а в третьем нуклеотиде метильной группы может и не быть.
Ещё одной способностью мРНК является то, что на 3 / -концах многих молекул мРНК эукариотических клеток имеются относительно длинные последовательности адениловых нуклеотидов, которые присоединяются к молекулам мРНК с помощью специальных ферентов уже после завершения синтеза. Реакция протекает в клеточном ядре и цитоплазме.
На 3 / - и 5 / - концах мРНК модифицируемые последовательности составляют около 25% от общей длины молекулы. Считают, что 5 / – кэпы и 3 / -поли-А – последовательности необходимы либо для стабилизации мРНК, предохраняющей её от действия нуклеаз, либо для регулирования процесса трансляции.
РНК-интерференция
В живых клетках обнаружено несколько типов РНК, которые могут уменьшать степень выражения гена при комплементарности мРНК или самому гену. Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и оказывают воздействие через механизм РНК-интерференции. При этом комплекс микро-РНК и ферментов может приводить к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградируется. Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов. Малые интерферирующие РНК (миРНК, 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК. Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам. У животных найдены так называемыме РНК, взаимодействующие с Piwi (piRNA, 29-30 нуклеотидов), действующие в половых клетках против транспозиции и играющие роль в образовании гамет. Кроме того, piRNA могут эпигенетически наследоваться по материнской линии, передавая потомству своё свойство ингибировать экспрессию транспозонов.
Антисмысловые РНК широко распространены у бактерий, многие из них подавляют выражение генов, но некоторые активируют экспрессию. Действуют антисмысловые РНК, присоединяясь к мРНК, что приводит к образованию двуцепочечных молекул РНК, которые деградируются ферментами.У эукариот обнаружены высокомолекулярные, мРНК-подобные молекулы РНК. Эти молекулы также регулируют выражение генов.
Кроме роли отдельных молекул в регуляции генов, регуляторные элементы могут формироваться в 5" и 3" нетранслируемых участках мРНК. Эти элементы могут действовать самостоятельно, предотвращая инициацию трансляции, либо присоединять белки, например, ферритин или малые молекулы, например, биотин.
Многие РНК принимают участие в модификации других РНК. Интроны вырезаются из пре-мРНК сплайсосомами, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК). Кроме того, интроны могут катализировать собственное вырезание. Синтезированая в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышко и тельцах Кахаля. После ассоциации мяРНК с ферментами, мяРНК связываются с РНК-мишенью путём образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК. Гидовые РНК осуществляют процесс редактирования РНК в кинетопласте - особом участке митохондрии протистов-кинетопластид (например, трипаносом).
Геномы, состоящие из РНК
Как и ДНК, РНК может хранить информацию о биологических процессах. РНК может использоваться в качестве генома вирусов и вирусоподобных частиц. РНК-геномы можно разделить на те, которые не имеют промежуточной стадии ДНК и те, которые для размножения копируются в ДНК-копию и обратно в РНК (ретровирусы).
Многие вирусы, например, вирус гриппа, на всех стадиях содержат геном, состоящий исключительно из РНК. РНК содержится внутри обычно белковой оболочки и реплицируется с помощью закодированных в ней РНК-зависимых РНК-полимераз. Вирусные геномы, состоящие из РНК разделяются на:
«минус-цепь РНК», которая служит только геномом, а в качестве мРНК используется комплементарная ей молекула;
двухцепоченые вирусы.
Вироиды - другая группа патогенов, содержащих РНК-геном и не содержащих белок. Они реплицируются РНК-полимеразами организма хозяина.
Ретровирусы и ретротранспозоны
У других вирусов РНК-геном есть в течение только одной из фаз жизненного цикла. Вирионы так называемых ретровирусов содержат молекулы РНК, которые при попадании в клетки хозяина служат матрицей для синтеза ДНК-копии. В свою очередь, с матрицы ДНК считывается РНК-геном. Кроме вирусов обратную транскрипции применяют и класс мобильных элементов генома - ретротранспозоны.