Молекулярная биология является одним из важнейших разделов биологических наук и подразумевает детализированное изучение клеток живых организмов и их составляющих. В сферу ее исследований входит множество жизненно важных процессов, таких как рождение, дыхание, рост, смерть.
Бесценным открытием молекулярной биологии стала расшифровка генетического кода высших существ и определение способности клетки хранить и передавать генетическую информацию. Основная роль в этих процессах принадлежит нуклеиновым кислотам, которых в природе различают два вида – ДНК и РНК. Что представляют собой эти макромолекулы? Из чего они состоят и какие биологические функции выполняют?
Что такое ДНК?
ДНК расшифровывается как дезоксирибонуклеиновая кислота. Она представляет собой одну из трех макромолекул клетки (две другие – белки и рибонуклеиновая кислота), которая обеспечивает сохранение и передачу генетического кода развития и деятельности организмов. Простыми словами, ДНК – носитель генетической информации. В ее составе содержится генотип индивида, который обладает способностью к самовоспроизводству и передает информацию по наследству.
Как химическое вещество кислота была выделена из клеток еще в 1860-х годах, однако вплоть до середины XX столетия никто и не предполагал, что она способна хранить и передавать информацию.
Долгое время считалось, что эти функции выполняют белки, однако в 1953 году группа биологов сумела значительно расширить понимание сути молекулы и доказать первостепенную роль ДНК в сохранении и передаче генотипа. Находка стала открытием века, а ученые получили за свою работу Нобелевскую премию.
Из чего состоит ДНК?
ДНК является крупнейшей из биологических молекул и представляет собой четыре нуклеотида, состоящих из остатка фосфорной кислоты. В структурном отношении кислота достаточно сложная. Ее нуклеотиды соединяются между собой длинными цепями, которые объединяются попарно во вторичные структуры – двойные спирали.
ДНК имеет свойство повреждаться радиацией или различными окисляющими веществами, в силу чего в молекуле происходит процесс мутации. Функционирование кислоты напрямую зависит от ее взаимодействия с еще одной молекулой – белками. Вступая с ними во взаимосвязь в клетке, она образует вещество хроматин, внутри которого осуществляется реализация информации.
Что такое РНК?
РНК – это рибонуклеиновая кислота, содержащая в себе азотистые основания и остатки фосфорных кислот.
Существует гипотеза, что она является первой молекулой, получившей способность к самовоспроизводству еще в эпоху формирования нашей планеты – в добиологических системах. РНК и сегодня входит в геномы отдельных вирусов, выполняя в них ту роль, которую у высших существ играет ДНК.
Рибонуклеиновая кислота состоит из 4-х нуклеотидов, но вместо двойной спирали, как в ДНК, ее цепочки соединяются одинарной кривой. В нуклеотидах содержится рибоза, принимающая активное участие в обмене веществ. В зависимости от способности кодировать белок РНК делятся на матричную и некодирующие.
Первая выступает своего рода посредником в передаче закодированной информации рибосомам. Вторые не могут кодировать белки, но обладают другими возможностями – трансляцией и лигированием молекул.
Чем ДНК отличается от РНК?
По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара. Разница между ними в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.
В отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом. Еще одно отличие между ДНК и РНК заключается в их размерах – более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин, тогда как в РНК вместо тимина присутствует его разновидность – урацил.
Статья на конкурс «био/мол/текст»: Идея того, что жизнь могла возникнуть на основе самореплицирующихся молекул РНК, уже не нова. В самом деле, РНК совмещает в себе как функцию хранения наследственной информации, так и способность к биохимическому катализу. Сейчас гипотеза РНК-мира из чисто умозрительной теории превратилась в теоретическую модель, имеющую хорошую доказательную и экспериментальную базу. Безусловно, эта теория вызывает много вопросов, но, тем не менее, она по полному праву может быть названа одной из наиболее обоснованных гипотез возникновения жизни на Земле.
Противоречия гипотезы мира РНК
Идея мира РНК была высказана в 1968 году Карлом Вёзе , а окончательно сформулирована в 1986 году нобелевским лауреатом Уолтером Гильбертом . То, что РНК способна как хранить наследственную информацию, так и выполнять работу (например, при биосинтезе белка), было известно и ранее. Но окончательно гипотеза мира РНК смогла сформироваться лишь после открытия в 1981 году рибосомальной РНК из ресничного простейшего Tetrahymena , которая способна к автосплайсингу . Осуществляется это следующим образом: к интронной последовательности РНК прикрепляется нуклеотид G, далее цепь разрезается в месте присоединения нуклеотида. После этого происходит окончательное вырезание интрона и сшивание экзонов. Более того, эта интронная последовательность обладает рибонуклеазной активностью, т.е. она способна связываться с субстратной РНК и специфично разрезать её. Такие свойства рибонуклеиновому интрону придаёт его способность к образованию сложных трёхмерных структур.
Однако платой за высокую лабильность РНК служит её склонность к быстрой деградации. Здесь мы и сталкиваемся с первой трудностью концепции РНК-мира. Как молекула может служить надёжным хранилищем генетической информации, если время её жизни мало?
У млекопитающих время жизни мРНК в клетках составляет от нескольких минут до нескольких часов, максимум дней. У бактерий и вовсе, мРНК «живёт» от нескольких секунд до часа с небольшим. Согласитесь, недолго для надёжного хранилища информации! Тем более, в пребиотических условиях, агрессивная среда которых мало способствовала стабильности молекул.
Это противоречие способны разрешить некоторые предположения. Считается, что первые РНК могли размножаться в микрополостях во льду. В подтверждение этому, по данным ряда экспериментов, максимальная рибозимная активность РНК наблюдается при температуре около −8 °С. Возможно, это связано с тем, что при подобных температурах увеличивается концентрация РНК и понижается активность воды. Однако вероятная сложность здесь заключается в том, что РНК при низких температурах обретают повышенную склонность к образованию водородных связей между комплементарным нуклеотидами, что ведёт к образованию межмолекулярных комплексов и снижению каталитической активности .
Следующей большой трудностью является склонность РНК к гидролизу при pH>6. Фосфодиэфирные связи между нуклеотидами наиболее стабильны при рН, лежащих в пределах 4–5.
Также двоякую роль играют и ионы Mg 2+ : с одной стороны, они стабилизируют вторичную и третичную структуры РНК (что критично для способности к катализу), с другой же, их высокая концентрация способствует деградации молекул. Выше упоминалось, что молекулы РНК наиболее стабильны в кислой среде. В этих условиях цитозин и аденозин протонируются, тем самым обретая дополнительный положительный заряд, что снижает потребность в катионах. К примеру, при рН=4 некоторые рибозимы сохраняют свою активность даже в отсутствие ионов .
РНК является весьма сложной молекулой, и вероятность её внезапного возникновения из отдельных атомов или фрагментов крайне низка. Действительно, сложно себе представить, как могли соединиться вместе азотистое основание, рибоза и фосфат, образовав нуклеотид. Однако Санчез, Оргел, Паунер и Сазердэнд показали возможность синтеза пиримидинов из молекул, вероятно, имевшихся в пребиотических условиях Земли .
Также важно понять, каким образом осуществлялась полимеризация первых нуклеотидов в полимерные цепочки. Относительна недавно была обнаружена важная роль различных минералов и ионов металлов в катализе при образовании биополимеров . К примеру, монтмориллонит катализирует полимеризацию нуклеотидов, 5′-фосфат которых ранее был активирован имидазолом. Более того, монтмориллонит способен образовывать везикулы из простых жирных кислот . Таким образом, этот минерал, с одной стороны, способствует полимеризации нуклеотидов, а с другой - образованию мембранных структур.
Гипотетически, существует множество вариантов соединения рибонуклеотидов друг с другом через различные атомы рибозы. Однако в живых организмах нуклеотиды соединены друг с другом через 3′,5′-фосфодиэфирную связь (за некоторыми исключения: например, кэп в мРНК эукариот присоединяется через 5′,5′-связь). Недавние исследования Шостака показали, что рибозимы, имеющие в своём составе нуклеотиды, соединённые как через 3′,5′-связь, так и через 2’,5′-связь, частично сохраняли каталитические свойства . Вероятно, в первых рибонуклеиновых полимерах могли реализовываться различные варианты фосфодиэфирной связи, однако эволюцией была отобрана именно 3′,5′-связь.
Зачастую каталитической активностью обладают лишь длинные цепочки РНК. Это один из основных объектов критики теории РНК-мира, ибо случайное возникновение длинных последовательностей, способных выполнять биохимическую работу, весьма маловероятно. Одна из лучших рибозимных репликаз, созданных на сегодня, способна реплицировать до 95 нуклеотидов , однако сама она при этом имеет длину в 190 нуклеотидов (см. врезку). Длина этой последовательности слишком велика для спонтанного возникновения в пребиотических условиях. Исследования in vitro показывают, что для выделения молекул, способных к катализу, требуется около 10 13 -10 14 молекул РНК - довольно много для того, чтобы столь длинный рибозим мог появиться в готовом виде. Однако открытие коротких рибозимов ставит под сомнение идею того, что для появления РНК-катлизаторов требуются астрономические количества молекул. В самом деле, получены полирибонуклеотиды c активными дуплексами, способными к самовырезанию, имеющие длину лишь 7 остатков . Более того, были получены данные, что даже рибозим, урезанный всего лишь до пяти нуклеотидов, сохранял свои ферментативные способности . Но каталитическая активность у минирибозимов значительно ниже, чем у их более длинных «собратьев». Из этого следует, что короткие рибозимы могли быть эволюционными предшественниками длинных. Со временем они приобрели бóльшую длину, которая способствовала обретению более правильной структуры и, как следствие, улучшению каталитических свойств.
Рибозимные репликазы
Для того, чтобы в мире РНК полирибонуклеотиды могли размножаться, должны были существовать рибозимные аналоги белковых полимераз. В современных живых организмах рибозимы с таким видом активности не обнаружены, однако подобные молекулы были созданы искусственно. Молекулярные биологи из Великобритании обратили внимание на ранее известный рибозим R18, обладающий полимеразной активностью . Он и стал объектом эксперимента: путём искусственной эволюции и разумного планирования из исходного рибозима были получены четыре новые молекулы с улучшенными каталитическими свойствами . Дело в том, что исходный рибозим R18 (обозначен на картинке буквой А) был способен реплицировать лишь фрагменты РНК длиной до 20 нуклеотидов. Также им могла быть реплицирована далеко не каждая последовательность РНК, а лишь узкий круг определённых матриц . Учёные пошли двумя путями:
В результате, полезные свойства рибозимов tC19 и Z удалось объединить в одном, названном tC19Z. Данный рибозим способен копировать как довольно широкий круг матриц, так и достаточно длинные последовательности .
Интроны, способные вырезаться самостоятельно, были обнаружены в тирозиновой тРНК таких сложных организмов, как человек и цветковое двудольное растение Arabidopsis thaliana . Эти 12-ти и 20-ти нуклеотидные участки в клетке вырезаются путём сплайсинга с участием белков, однако этот интрон показал способность вырезать самого себя и без участия ферментов.
РНК-переключатели
Ограниченная каталитическая способность рибозимов часто становится ещё одним хлипким краеугольным камнем теории мира РНК. Критики теории считают, что тот минимум химических реакций, который необходим для осуществления метаболизма в мире РНК, не может быть обеспечен одними лишь рибозимами. Подавляющее большинство РНК-катализаторов катализируют лишь разрыв и создание фософодиэфирных связей между нуклеотидами. Кажется, что молекулы РНК со своими четырьмя весьма схожими мономерами безнадёжно проигрывают в химическом разнообразии белкам, которые имеют в своём составе 20 аминокислот, весьма различных по свойствам. Однако не стоит забывать, что многие белковые ферменты для выполнения активной работы должны присоединить лиганды - кофакторы , - без которых ферментативная активность попросту исчезает.
И здесь стоит вспомнить об РНК-перключателях или рибопереключателях (англ. riboswitches ). Что же это такое? Как известно, информация об аминокислотной последовательности белка передаётся в рибосому через мРНК . Матричная РНК транскрибируется с ДНК посредством фермента ДНК-полимераза II . В данном случае, помимо самого гена, транскрибируется участок впереди него, на котором и расположен рибоперключатель . РНК-переключатель представляет собой участок мРНК, способный связывать молекулу строго определённого вещества. После связывания переключатель меняет свою пространственную конфигурацию, что делает невозможной дальнейшую транскрипцию .
Важно понимать принцип работы РНК-переключателей, поэтому скажем пару слов об их устройстве. Состоит он из двух частей: из аптамера и «экспрессионной платформы». Аптамер, по сути, является рецептором, который с очень высокой селективностью связывается с определённой молекулой. Эффекторной молекулой для аптамера является молекула, производимая белком, ген которого и регулируется переключателем. «Экспрессионная платформа» и есть сам РНК-переключатель, который после связывания рецептора с лигандом меняют конфигурацию и препятствует дальнейшей транскрипции.
Однако существуют и РНК-переключатели, действующие по более сложному механизму. Например, рибопереключатель, контролирующий транскрипцию гена metE бактерии Bacillus clausii , является двойным, т.е. имеет два рецепторных участка, связывающих две разных молекулы . Разберём данный механизм подробнее.
Ген metE кодирует фермент, превращающий гомоцистеин в аминокислоту метионин. Затем метионин используется (уже другим ферментом) для синтеза S-аденозилметионина (или проще - SAM). Помимо гена metE , существует и другой ген - metН . Белок гена metН катализирует ту же реакцию, но с большей эффективностью, чем metE . Однако metН для своей работы требует кофермент - метилкобаламин (или MeCbl), синтезируемый из аденозилкобаламина (или AdoCbl). Так вот, транскрипт metE имеет РНК-переключатель, который содержит два связывающих участка: один для SAM, другой - для AdoCbl. Данный переключатель способен действовать как логический элемент NOR (и/или) . То есть, для выключения metE достаточно связывания с рецепторами рибопереключателя либо одной из эффекторных молекул, либо сразу обеих. Сам механизм прерывания трансляции основан на образовании шпильки путём удаления шести нуклеотидов из рибопереключателя (рис. 1А). Логику действий такого элемента NOR можно описать так: «Я подавляю транскрипцию, если в среде присутствует либо вещество А, либо вещество В, либо оба вещества сразу» . Остаётся только удивляться, сколь красивы и элегантны решения Природы!
Рисунок 1. Работа рибопереключателей. А - Рибопереключатели на транскриптах генов metE, metH и metK. Голубым обозначены шпилечные структуры, образуемые в результате вырезания шести или более уридиновых нуклеотидов. Видно, что у metE имеется два акцепторных и два шпилечных участка. В - Путь биосинтеза S-аденозилметионина. На первом этапе гомоцистеин преобразуется в амикислоту метионин. Это превращение может быть катализировано одним из двух ферментов: metE или metH. metH проводит эту реакцию с большей эффективностью, однако требует для своей работы дополнительного вещества (кофактора). На втором этапе фермент metK превращает метионин в S-аденозилметионин.
Между тем, РНК-переключатели способны связывать значительное число белковых кофакторов, таких как флавинмононуклеотид, тиаминпирофосфат, тетрагидрофолат, S-аденозилметионин, аденозилкобаламин . Изначально считалось, что РНК-переключатели способны лишь подавлять экспрессию генов , но позже были получены данные, свидетельствующие о том, что некоторые переключатели, напротив, ее усиливают. Сами по себе РНК-переключатели представляют весьма интересное явление, так как они демонстрируют возможность регуляции работы генов без прямого участия белков - иными словами, демонстрирует самодостаточность и универсальность РНК. Судя по всему, РНК-переключатели являются очень древним механизмом: так, они обнаружены во всех доменах живой природы: у бактерий, архей и эукариот . Похоже, что, по меньшей мере, некоторые из современных кофакторов белков были прямиком заимствованы из мира РНК. Можно нарисовать примерно такую картину: рибозимы изначально использовали многие из современных кофаторов для своих целей, однако с появлением более эффективных белковых ферментов эти кофакторы были заимствованы последними.
Рисунок 2. Вторичная структура РНК-переключателя гена metE . Выделены акцепторы - сайты связывания с молекулами SAM и AdoCbl, а также шпилечные терминирующие структуры.
Геномные тэги и тРНК
Рисунок 3. Вторичная структура тРНК. На рисунке отчётливо видна характерная для тРНК вторичная структура в виде «клеверного листа». В верхней половине молекулы на 3′-конце расположена CCA-область и акцепторная петля, связывающая аминокислоту. В нижней части молекулы находится антикодоновая петля, ответственная за комплементарное связывание с кодоном мРНК. Согласно гипотезе геномного тэга, верхняя и нижняя половины тРНК эволюционировали по отдельности, причём верхняя половина древнее нижней.
Всем хорошо известна важная роль тРНК в биосинтезе белка. Однако у тРНК и подобных ей молекул есть другая, менее известная, но не менее важная функция: в различных репликативных процессах они исполняют роль праймеров и шаблонов. Это могут быть процессы репликации одноцепочечной вирусной РНК, репликация митохондриальной ДНК у грибов, репликации теломер .
Обратимся к вирусной РНК. 3′-конец многих бактериальных вирусов и вирусов растений структурно очень похож на «верхнюю половину» современной тРНК (та часть молекулы, которая связывается с аминокислотой; рис. 3). Подобные участки, расположенные на 3′-концах, названы «геномными тэгами» . Тэг играет роль шаблона при инициации репликации вирусной РНК. Более того, эти участки бывают настолько похожи на «настоящие» тРНК , что могут быть аминоацилированы (т.е. к ним может быть присоединена аминокислота) при помощи фермента аминоацил-тРНК-синтетазы .
Также репликация многих РНК у ретровирусов начинается с того, что к сайту связывания праймера на вирусной РНК присоединяется тРНК хозяйского организма . Тем самым видно, что тРНК современных организмов способны также служить и праймерами. Затем, используя тРНК как праймер, обратная транскриптаза копирует вирусный РНК-геном в ДНК.
Возможно ли, что тРНК сегодняшних организмов произошли от древних геномных тэгов? Алан Вейнер и Нэнси Мэйцелс отвечают на этот вопрос утвердительно. Согласно их теории, верхняя и нижняя половинки тРНК эволюционировали по-отдельности, причём верхняя часть тРНК появилась раньше нижней и является потомком геномных тэгов .
Происхождение рибосом
При построении гипотезы мира РНК много внимания уделяется и происхождению рибосом, потому что их образование фактически можно приравнять к переходу от РНК-катализа к белковому процессу. Как известно, рибосома состоит из двух субъединиц: малой и большой. Ключевую роль в синтезе белковой цепи играет большая субъединица рибосомы, в то время как маленькая считывает мРНК. Модель происхождения одной из молекул большой субъединицы была предложена канадскими биохимиками Константином Боковым и Сергеем Штейнбергом .
Они сосредоточили внимание на 23s-рРНК (состоящей из шести доменов, I–VI), так как именно в этой молекуле находится функциональный центр, ответственный за реакцию транспептидации (присоединение новой аминокислоты к растущей полипептидной цепи). Данная молекула содержит около трёх тысяч нуклеотидов и способна образовывать сложные трёхмерные структуры. Важную роль в поддержании трёхмерной структуры молекулы играют так называемые А-минорные связи . Они представляют собой связи между «стопками» нуклеотидов (как правило, аденозинов ) с участками, образующими двойные спирали. Связи формируются между спиралями и стопками, расположенными в разных областях молекулы.
23s-рРНК слишком сложна, чтобы она могла появиться сразу в готовом виде . Соответственно, в молекуле должна присутствовать некая более простая структура, с которой и началась её эволюция. Особое внимание исследователей привлёк домен V . Интересным в нём было то, что он содержит большое количество двойных спиралей при фактически полном отсутствии аденозиновых стопок. Вот что пишут по этому поводу авторы исследования: «Чтобы объяснить аномалию, имеющую место в домене V, мы предположили, что это отражает порядок, в котором различные части присоединялись к 23s-рРНК по мере её эволюции. В А-минорных мотивах конформационная стабильность аденозиновых стопок зависит от присутствия двойных спиралей, в то время как двойные спирали способны сохранять стабильную структуру сами по себе» . Из этого следует, что домен V является наиболее древней частью молекулы: его спиральные участки, что придают стабильность всей молекуле, должны были появиться раньше других частей, содержащих аденозиновые стопки. Более того, именно в пятом домене находится функциональный центр, ответственный за формирование пептидной связи в процессе биосинтеза белка.
Выходит, что пятый домен является и функциональным центром молекулы, и её структурным остовом. Это говорит о том, что эволюция 23s-рРНК началась именно с него. Далее авторы попытались реконструировать эволюцию 23s-рРНК. Для этого они разбили молекулу на 60 относительно небольших участков и попытались «разобрать» её так, чтобы, убирая части поэтапно, не повредить структуру оставшейся молекулы. Опустив детали, укажем, что вывод был именно такой: эволюция этой молекулы началась именно с пептидил-трансферазного центра пятого домена, так как при разборке он оставался последним неповреждённым участком (см. рис. 4). Исследователи считают, что именно эта структура и является древней «проторибосомой». Способна ли эта маленькая часть огромной молекулы выполнять свою работу самостоятельно? Исследования дают положительный ответ. В ходе экспериментов были получены искусственно выведенные рибозимы, способные осуществлять реакцию транспептидации .
Рисунок 4. Эволюция «проторибосомы». Слева - Вторичная структура 23s-рРНК. Красные кружочки изображают спиральные участки, жёлтые - аденозиновые «стопки». Голубые линии показывают А-минорные связи. Римские цифры обозначают домены молекулы. Отчётливо видно, что наибольшее количество спиральных участков находится в домене V. Справа - Для того чтобы выяснить процесс эволюции 23s-рРНК, авторы разбили молекулу на 60 структурных блоков. Далее они попытались «разобрать» молекулу так, чтобы при последовательном удалении этих блоков молекула продолжала работать . Сначала они отделили 19 блоков, не повредив при этом оставшиеся. После удалось отделить ещё 11 блоков, а затем ещё последовательно 9, 5, 3, 3, 2, 2, 2. Затем ещё три блока оказалось возможным отделить по одному .
По всей видимости, именно пятый домен послужил «стартовой точкой» в эволюции 23s-рРНК. Позже к нему начали добавляться различные блоки, улучшающие работы молекулы. Изначально к проторибосоме присоединилось восемь блоков, образовавших «основание», что повлекло за собой увеличение стабильности всей молекулы. Затем добавились следующие 12 блоков, которые образовали структуры, позволяющие соединяться большой и малой субъединицам друг с другом. Последними добавились блоки, образующие т.н. «протуберанцы» - выросты на поверхности большой субъединицы . Функция этих выростов в том, чтобы помочь рибосоме выбрать нужную аминоацил-тРНК, а также «выпустить на волю» ту тРНК, которая уже отдала свою аминокислоту растущей белковой молекуле.
Следы мира РНК
Наследие мира РНК можно обнаружить в любом живом организме. Вспомним рибосомы, которые, по всей видимости, являются реликтами очень давней эпохи, ведь структурно и функционально рибосомы крайне схожи и у человека, и у дождевого червя, и у кишечной палочки. Главный переносчик энергии в клетке - молекула аденозинтрифосфата - представляет собой не что иное, как аденозин с двумя дополнительными фосфатами. Такие важнейшие молекулы, как переносчики электронов ФАД и НАД также являются модифицированными нуклеотидами. Конечно, гипотеза мира РНК ещё не доказана, да и нет гарантий, что когда-нибудь это случится. Но факт того, что важнейшие процессы в клетке протекают при активном участии РНК и рибонуклеотидов, может служить веским доводом в пользу истинности этой теории.
Литература
- Карл Вёзе (1928–2012) ;
- Harold S Bernhardt. (2012). The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)a . Biology Direct . 7 , 23;
- C. Briones, M. Stich, S. C. Manrubia. (2009). The dawn of the RNA World: Toward functional complexity through ligation of random RNA oligomers . RNA . 15 , 743-749;
- Matthew W. Powner, Béatrice Gerland, John D. Sutherland. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions . . Biol. Bull. 196 , 327–328;
- Konstantin Bokov, Sergey V. Steinberg. (2009). A hierarchical model for evolution of 23S ribosomal RNA . Nature . 457 , 977-980;
- Элементы: «
По химическому строению РНК (рибонуклеиновая кислота) является нуклеиновой кислотой, во многом схожей с ДНК . Важными отличиями от ДНК является то, что РНК состоит из одной цепи, сама цепь более короткая, вместо тимина в РНК присутствует урацил, вместо дезоксирибозы - рибоза.
По строению РНК является биополимером, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из остатка фосфорной кислоты, рибозы и азотистого основания.
Обычными для РНК азотистыми основаниями являются аденин, гуанин, урацил и цитозин. Аденин и гуанин относятся к пуринам, а урацил и цитозин - к пиримидинам. Пуриновые основания состоят из двух колец, а пиримидиновые из одного. Кроме перечисленных азотистых оснований в РНК встречаются и другие (в основном различные модификации перечисленных), в том числе и характерный для ДНК тимин.
Рибоза - это пентоза (углевод, включающий пять атомов углерода). В отличие от дезоксирибозы имеет дополнительную гидроксильную группу, что делает РНК более активной в химических реакциях по сравнению с ДНК. Также как и во всех нуклеиновых кислотах пентоза в РНК имеет циклическую форму.
Нуклеотиды соединены в полинуклеотидную цепь ковалентными связями между остатками фосфорной кислоты и рибозой. Один остаток фосфорной кислоты связан с пятым атомом углерода рибозы, а другой (от соседнего нуклеотида) связан с третьим атомом углерода рибозы. Азотистые основания связаны с первым атом углерода рибозы и располагаются перпендикулярно фосфатно-пентозному остову.
Ковалентно связанные нуклеотиды формируют первичную структуру молекулы РНК. Однако по своему вторичному и третичному строению РНК бывают весьма различными, что связано со множеством выполняемых ими функций и существованием различных типов РНК .
Вторичная структура РНК формируется за счет водородных связей возникающих между азотистыми основаниями. Однако, в отличие от ДНК, у РНК эти связи возникают не между разными (двумя) цепями полинуклеотида, а за счет различных способов складывания (петли, узлы и др.) одной цепи. Таким образом, вторичная структура молекул РНК бывает куда разнообразнее, чем у ДНК (где это почти всегда двойная спираль).
Строение многих молекул РНК также подразумевает третичную структуру, когда сворачиваются уже спаренные за счет водородных связей участки молекулы. Например, молекула транспортной РНК на уровне вторичной структуры сворачивается в форму, напоминающую клеверный лист. А на уровне третичной структуры сворачивается так, что становится похожа на букву Г.
Рибосомальная РНК образует комплексы с белками (рибонуклеопротеиды).
Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).
У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.
Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой . Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.
РНК принадлежит главная роль в передаче и реализации наследственной информации . В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.
Существует три основных класса клеточных РНК.
- Информационная (иРНК), или матричная (мРНК) . Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 0,05х106 до 4х106) и стабильности. Составляют около 2% от общего количества РНК в клетке. Все иРНК являются переносчиками генетической информации из ядра в цитоплазму, к месту синтеза белка. Они служат матрицей (рабочим чертежом) для синтеза молекулы белка, так как определяют аминокислотную последовательность (первичную структуру) белковой молекулы.
- Рибосомальные РНК (рРНК) . Составляют 80–85% от общего содержания РНК в клетке. Рибосомальная РНК состоит из 3–5 тыс. нуклеотидов. Она синтезируется в ядрышках ядра. В комплексе с рибосомными белками рРНК образует рибосомы – органоиды, на которых происходит сборка белковых молекул. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
- Транспортные РНК (тРНК) . Молекулы тРНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК около 25 тыс. Молекулы тРНК играют роль посредников в биосинтезе белка – они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме клеверный лист.
Вторичная структура РНК – характерна для тРНК, одноцепочечная, по форме напоминает «клеверный лист». Включает:
- сравнительно короткие двойные спирали – стебли,
- однотяжевые участки – петли.
Имеется 4 стебля (акцепторный, антикодоновый, дигидроуридиловый, псевдоуридиловый) и 3 петли.
«Псевдоузел» - элемент вторичной структуры РНК, схематично
Акцепторный стебель – содержит 3’- и 5’- концы полинуклеотидной цепи, 5’-конец заканчивается остатком гуаниловой кислоты, 3’-конец – триплетом ЦЦА и служит для образования сложноэфирной связи с АК.
Антикодоновый стебель узнает свой кодон на и-РНК в рибосомах по принципу комплементарности.
Псевдоуридиловый стебель служит для прикрепления к рибосоме.
Дигидроуридиловый стебель служит для связи с аминоацил-тРНК-синтетазой.
12 января 2018В предложенной вашему вниманию статье мы предлагаем изучить и построить сравнительную таблицу ДНК и РНК. Для начала необходимо сказать, что есть специальный раздел биологии, который занимается вопросами хранения, реализации и передачи наследственной информации, его название - молекулярная биология. Именно эту область мы и затронем далее.
Речь пойдет о полимерах (высокомолекулярных органических соединениях), образованных из нуклеотидов, которые и имеют название - нуклеиновые кислоты. Эти соединения выполняют очень важные функции, одна из которых - хранение информации об организме. Для того чтобы сравнить ДНК и РНК (таблица будет представлена в самом конце статьи), необходимо знать, что всего выделяют два вида нуклеиновых кислот, участвующих в биосинтезе белка:
- дезоксирибонуклеиновую, которую мы чаще встречаем в виде аббревиатуры - ДНК;
- рибонуклеиновую (или сокращенно, РНК)
Нуклеиновая кислота: что это такое?
Для того чтобы составить таблицу сравнения ДНК и РНК, необходимо более подробно познакомиться с данными полинуклеотидами. Начнем с общего вопроса. И ДНК, и РНК - это нуклеиновые кислоты. Как говорилось ранее, они образуются из остатков нуклеотидов.
Эти полимеры можно обнаружить абсолютно в любой клеточке организма, так как именно на их плечи возложена большая обязанность, а именно:
- хранение;
- передача;
- реализация наследственности.
Теперь очень коротко осветим основные их химические свойства:
- хорошо растворяются в воде;
- практически не поддаются растворению в органических растворителях;
- чувствительны к изменениям температуры;
- если молекулу ДНК выделить каким-либо возможным образом из природного источника, то можно наблюдать фрагментацию при механических действиях;
- фрагментирование происходит ферментами под названием нуклеазы.
Сходства и различия ДНК и РНК: пентозы
В таблице сравнения ДНК и РНК важно отметить одно очень важное сходство между ними - наличие в составе моносахаридов. Важно заметить, что каждая нуклеиновая кислота имеет отдельные их формы. Деление нуклеиновых кислот на ДНК и РНК происходит в результате того, что они обладают различными пентозами.
Так, например, в составе ДНК мы можем обнаружить дезоксирибозу, а в РНК - рибозу. Обратите внимание на тот факт, что при втором атоме углерода в дезоксирибозе нет кислорода. Ученые сделали следующее предположение - отсутствие кислорода имеет следующее значение:
- оно укорачивает связи С 2 и С 3 ;
- добавляет прочности молекуле ДНК;
- создает условия для укладки массивной молекулы в ядре.
Сравнение азотистых оснований
Итак, всего выделяют пять азотистых оснований:
- А (аденин);
- Г (гуанин);
- Ц (цитозин);
- Т (тимин);
- У (урацил).
Важно отметить, что именно эти крошечные частички являются кирпичиками наших молекул. Именно в них заключена вся генетическая информация, а если быть более точными, то в их последовательности. В ДНК мы можем встретить: А, Г, Ц и Т, а в РНК - А, Г, Ц и У.
Азотистые основания - это большая часть нуклеиновых кислот. Помимо пяти перечисленных, встречаются и другие, но это бывает крайне редко.
Принципы строения ДНК
Еще одна важная особенность - наличие четырех уровней организации (вы сможете это увидеть на картинке). Как уже стало понятно, первичная структура - это цепочка нуклеотидов, при этом соотношение азотистых оснований подчиняется некоторым законам.
Вторичная структура - двойная спираль, состав каждой цепи которой специфичен для вида. Остатки фосфорной кислоты мы можем обнаружить снаружи спирали, а азотистые основания располагаются внутри.
Последним уровнем выступает хромосома. Представьте, что Эйфелева башня помещается в спичечный коробок, вот так уложена молекула ДНК в хромосоме. Важно заметить еще и то, что хромосома может состоять из одной хроматиды или двух.
Поговорим, прежде чем составить таблицу сравнения ДНК и РНК, о структуре РНК.
Виды и особенности строения РНК
Для сравнения сходства ДНК и РНК (таблицу вы сможете увидеть в последнем параграфе статьи), разберем разновидности последних:
- Прежде всего, тРНК (или транспортная) - одноцепочная молекула, которая выполняет функции транспортировки аминокислот и синтеза белка. Ее вторичной структурой является "клеверный лист", а третичная изучена крайне мало.
- Информационная или матричная (мРНК) - перенос информации от молекулы ДНК к месту синтеза белка.
- И последняя - рРНК (рибосомная). Как уже стало понятно из названия, содержится в рибосомах.
Какие функции выполняет ДНК?
Сравнивая ДНК и РНК, невозможно упустить вопрос выполняемых функций. В итоговой таблице эта информация обязательно будет отражена.
Итак, не сомневаясь ни секунды, мы можем утверждать, что в маленькой молекуле ДНК запрограммирована вся генетическая информация, способная контролировать каждый наш шаг. Сюда относятся:
- здоровье;
- развитие;
- продолжительность жизни;
- наследственные болезни;
- сердечно-сосудистые заболевания и пр.
Представьте, что мы выделили все молекулы ДНК из одной клетки человеческого организма и разложили их в ряд. Как вы думаете, какая длина цепочки получится? Многие подумают, что миллиметры, но это не так. Длина данной цепи будет составлять целых 7,5 сантиметров. Невероятно, но почему мы тогда клетку не можем разглядеть без мощного микроскопа? Все дело в том, что молекулы очень сильно спрессованы. Вспомните, мы в статье уже говорили о размерах Эйфелевой башни.
А какие же все-таки функции выполняют ДНК?
- Являются носителями генетической информации.
- Воспроизводят и передают информацию.
Какие функции выполняет РНК?
Для более точного сравнения ДНК и РНК, предлагаем рассмотреть функции, выполняемые вторыми. Ранее уже говорилось, что выделяется три типа РНК:
- РРНК выполняет функцию структурной основы рибосомы, помимо этого они взаимодействуют с другими видами РНК в процессе синтеза белка и принимают участие при сборке полипептидной цепи.
- Функция мРНК - матрица для биосинтеза белка.
- ТРНК связывают аминокислоты и переносят их в рибосому для синтеза белка, кодируют аминокислоты, расшифровывают генетический код.
Выводы и сравнительная таблица
Нередко школьникам дают задание по биологии или химии - сравнить ДНК и РНК. Таблица в этом случае будет необходимым помощником. Все, что было сказано ранее в статье, вы сможете увидеть здесь в сжатой форме.
Признак | ДНК | РНК |
Структура | Две цепи. | Одна цепь. |
Полинуклеотидная цепь | Цепи правозакручены относительно друг друга. | Может иметь различные формы, все зависит от типа. Для примера возьмем тРНК, имеющую форму кленового листа. |
Локализация | В 99% локализация в ядре, однако можно встретить в хлоропластах и митохондриях. | Ядрышки, рибосомы, хлоропласты, митохондрии, цитоплазма. |
Мономер | Дезоксирибонуклеотиды. | Рибонуклеотиды. |
Нуклеотиды | А, Т, Г, Ц. | А, Г, Ц, У. |
Функции | Хранение наследственной информации. | МРНК переносит наследственную информацию, рРНК выполняет структурную функцию, мРНК, тРНК и рРНК участвуют в синтезе белка. |
Несмотря на то что наша сравнительная характеристика получилась очень краткой, мы смогли охватить все аспекты строения и функций рассматриваемых соединений. Эта таблица сможет послужить хорошей шпаргалкой на экзамене или просто памяткой.