Мышечные ткани (лат. textus muscularis) - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.
Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.
Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).
Состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).
Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование темных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть ее деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы.Волокна длиной от 10 до 12 см.
Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы(по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения - вставочные диски, в которых объединяется их цитоплазма.Существует также другой межклеточный контакт- аностамозы(впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша) Особым свойством этой ткани является автоматия - способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной(атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов- секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.
Мышечные ткани – это специализированные ткани, основной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность миокарда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных белков.
Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характеризуется тем, что содержит миофибриллы, не имеющие поперечной исчерченности; 2) поперечнополосатая (исчерченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделяется на скелетную и сердечную . Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, находятся во внутренних органах и сосудах); 2) эпидермальные (развиваются из кожной эктодермы, включают немышечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейральные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) соматические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань); 5) целомические (развиваются из висцерального листка спланхнотома и образуют сердечную мышечную ткань). Первые три типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым. К общим структурным признакам, характерным для мышечных тканей, следует отнести наличие: 1)специальных органелл – миофибрилл, благодаря взаимодействию их сократительных белков, осуществляется сокращение; 2)развитого трофического аппарата, обеспечивающего выполнение сократительной функции – митохондрий, гладкой эндоплазматической сети, включений гликогена и миоглобина; 3)развитого опорного аппарата в виде двуслойной оболочки с окружающей ее сетью волокон соединительной ткани.
Гладкая мышечная ткань
Гладкая мышечная ткань мезенхимного происхождения располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий миоцит . Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально расположенным ядром (рис. 7-1). Цитолемма гладкого миоцита образует многочисленные впячивания – кавеолы (мелкие пузырьки). Снаружи цитолемму покрывает тонкая базальная мембрана. В базальной мембране каждого миоцита есть отверстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.
Органеллы общего значения – комплекс Гольджи, митохондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохондрии . Саркоплазматическая сеть участвует в синтезе гликозаминогликанов и белковых молекул, из которых осуществляется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примыкают к кавеолам и вместе с ними служат для депонирования ионов кальция.
Специальные органеллы видны в виде нитей, ориентированных преимущественно вдоль длинной оси клетки и не имеющих поперечной исчерченности. В цитоплазме миоцитов стабильно выявляются только тонкие нити – миофиламенты, состоящие из белка актина. Они прикрепляются на внутренней стороне цитолеммы, образуя плотные тельца, состоящие из белка актинина. При изменении мембранного потенциала клетки ионы кальция, поступающие из депо, активируют сборку миозиновых (более толстых) нитей и их взаимодействие с актиновыми. По мере образования актин-миозиновых мостиков происходит смещение актиновых миофиламентов навстречу друг другу, тяга передается на цитолемму, и клетка укорачивается. При уменьшении содержания кальция миозин теряет сродство к актину. В результате начинается расслабление миоцита и разборка миозиновых нитей. Сокращение медленное, тоническое.
Рис. 7-1. Гладко-мышечная клет-ка.
1. Митохондрии.
2. Базальная мембрана.
3. Плотные тельца.
4. Зона щелевидных контактов.
5. Актиновые миофиламенты.
6. Ядро.
7. Кавеолы.
(По Lentz T. L. 1971).
Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и парасимпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют проведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также миоциты-пейсмекеры, которые сами генерируют потенциал действия и передают его соседним клеткам.
Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эндомизий . Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием . В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпимизием . При повышенной функциональной нагрузке гладкие миоциты гипертрофируются, как, например, в матке во время беременности, проявляя высокую способность к физиологической регенерации. При репаративной регенерации восстановление возможно за счет деления малодифференцированных миоцитов, которые находятся в составе мышечных комплексов, а также из адвентициальных клеток и миофибробластов.
Ткань - это совокупность схожих по строению клеток, которые объединены общими функциями. Практически все состоят из разных типов тканей.
Классификация
У животных и человека в организме присутствуют следующие типы тканей:
- эпителиальная;
- нервная;
- соединительная;
- мышечная.
Эти группы объединяют по несколько разновидностей. Так, соединительная ткань бывает жировой, хрящевой, костной. Также сюда относятся кровь и лимфа. Эпителиальная ткань существует многослойная и однослойная, в зависимости от строения клеток можно выделить также плоский, кубический, цилиндрический эпителий и т. д. Нервная бывает только одного вида. А о мы поговорим подробнее в этой статье.
Виды мышечной ткани
В организме всех животных выделяют три ее разновидности:
- поперечно-полосатые мышцы;
- сердечная мышечная ткань.
Функции гладкой мышечной ткани отличаются от таковых у поперечно-полосатой и сердечной, поэтому другое у нее и строение. Давайте рассмотрим подробнее структуру каждого вида мускулатуры.
Общая характеристика мышечных тканей
Так как все три вида относятся к одному типу, у них есть много общего.
Клетки мышечной ткани называются миоцитами, или волокнами. В зависимости от разновидности ткани, они могут иметь различную структуру.
Еще одним общим признаком всех видов мышц является то, что они способны сокращаться, однако у разных видов этот процесс происходит индивидуально.
Особенности миоцитов
Клетки гладкой мышечной ткани, как и поперечно-полосатой и сердечной, обладают вытянутой формой. Кроме того, в них есть особые органоиды, которые называются миофибриллы, или миофиламенты. В них содержатся (актин, миозин). Они необходимы для того, чтобы обеспечить движение мышцы. Обязательным условием функционирования мускула, кроме наличия сократительных белков, также является присутствие в клетках ионов кальция. Поэтому недостаточное или избыточное употребление продуктов с высоким содержанием данного элемента может привести к некорректной работе мускулатуры - как гладкой, так и поперечно-полосатой.
Кроме того, в клетках присутствует еще один специфический белок - миоглобин. Он необходим для того, чтобы связываться с кислородом и запасать его.
Что касается органоидов, то кроме наличия миофибрилл особенным для мышечных тканей является содержание большого количества в клетке митохондрий - двумембранных органоидов, отвечающих за клеточное дыхание. И это неудивительно, так как мышечному волокну для сокращения необходимо большое количество энергии, вырабатываемой при дыхании митохондриями.
В некоторых миоцитах также присутствует более чем одно ядро. Это характерно для поперечно-полосатой мускулатуры, в клетках которой может содержаться около двадцати ядер, а иногда эта цифра доходит и до ста. Это связано с тем, что волокно поперечно-полосатой мышцы сформировано из нескольких клеток, объединенных впоследствии в одну.
Строение поперечно-полосатых мышц
Данный тип ткани еще называют скелетной мускулатурой. Волокна этого типа мышц длинные, собранные в пучки. Их клетки могут достигать нескольких сантиметров в длину (вплоть до 10-12). В них содержится много ядер, митохондрий и миофибрилл. Основная структурная единица каждой миофибриллы поперечно-полосатой ткани - саркомер. Он состоит из сократительного белка.
Главная особенность этой мускулатуры заключается в том, что она может контролироваться сознательно, в отличие от гладкой и сердечной.
Волокна данной ткани прикрепляются к костям с помощью сухожилий. Именно поэтому такие мышцы и называются скелетными.
Структура гладкой мышечной ткани
Гладкие мышцы выстилают некоторые внутренние органы, такие как кишечник, матка, мочевой пузырь, а также сосуды. Кроме того, из них формируются сфинктеры и связки.
Гладкое мышечное волокно не такое длинное, как поперечно-полосатое. Но толщина его больше, чем в случае со скелетными мускулами. Клетки гладкой мышечной ткани обладают веретоноподобной формой, а не нитевидной, как миоциты поперечно-полосатой.
Структуры, которые обесечивают сокращение гладких мышц, называются протофибриллами. В отличие от миофибрилл, они обладают более простой структурой. Но материал, из которого они построены, - все те же сократительные белки актин и миозин.
Митохондрий в миоцитах гладкой мускулатуры также меньше, чем в клетках поперечно-полосатой и сердечной. Кроме того, в них содержится только одно ядро.
Особенности сердечной мышцы
Некоторые исследователи определяют ее как подвид поперечно-полосатой мышечной ткани. Их волокна и вправду во многом похожи. Клетки сердца - кардиомиоциты - также содержат несколько ядер, миофибриллы и большое количество митохондрий. Данная ткань, как и способна сокращаться намного быстрее и сильнее, нежели гладкая мускулатура.
Однако основной особенностью, отличающей сердечную мышцу от поперечно-полосатой, является то, что она не может контролироваться сознательно. Сокращение ее происходит только автоматически, как и в случае с гладкими мышцами.
В составе сердечной ткани, кроме типичных клеток, присутствуют также секреторные кардиомиоциты. Они не содержат в себе миофибрилл и не сокращаются. Эти клетки отвесают за выработку гормона атриопептина, который необходим для регуляции артериального давления и контроля объема циркулирующей крови.
Функции поперечно-полосатых мышц
Основная их задача - перемещение тела в пространстве. Также это перемещение частей тела относительно друг друга.
Из других функций поперечно-полосатых мышц можно отметить поддержание позы, депо воды и солей. Кроме того, они выполняют защитную роль, что особенно касается мышц брюшного пресса, предотвращающих механическое повреждение внутренних органов.
К функциям поперечно-полосатой мускулатуры можно также причислить регуляцию температуры, так как при активном сокращении мышц происходит выделение значительного количества тепла. Вот почему при перемерзании мышцы начинают непроизвольно дрожать.
Функции гладкой мышечной ткани
Мускулатура данного вида выполняет эвакуаторную функцию. Она заключается в том, что гладкие мышцы кишечника проталкивают каловые массы к месту их выведения из организма. Также эта роль проявляется при родах, когда гладкие мышцы матки выталкивают плод из органа.
Функции гладкой мышечной ткани этим не ограничиваются. Также немаловажна их сфинктерная роль. Из ткани данного вида формируются специальные круговые мышцы, которые могут смыкаться и размыкаться. Сфинктеры присутствуют в мочевых путях, в кишечнике, между желудком и пищеводом, в желчном пузыре, в зрачке.
Еще одна важная роль, которую играют гладкие мышцы, - формирование связочного аппарата. Он необходим для поддержания правильного положения внутренних органов. При понижении тонуса этих мышц может происходить опущение некоторых органов.
На этом функции гладкой мышечной ткани заканчиваются.
Предназначение сердечной мышцы
Здесь, в принципе, особо говорить не о чем. Основная и единственная функция этой ткани - обеспечение циркуляции крови в организме.
Вывод: различия между тремя видами мышечной ткани
Для раскрытия этого вопроса представляем таблицу:
Гладкая мускулатура | Поперечно-полосатые мышцы | Сердечная мышечная ткань |
Сокращается автоматически | Может контролироваться сознательно | Сокращается автоматически |
Клетки удлинненные, веретеноподобные | Клетки длинные, нитевидные | Удлинненные клетки |
Волокна не объединяются в пучки | Волокна объединяются в пучки | Волокна объединяются в пучки |
Одно ядро в клетке | Несколько ядер в клетке | Несколько ядер в клетке |
Сравнительно небольшое количество митохондрий | Большое количество митохондрий | |
Отсутствуют миофибриллы | Присутствуют миофибриллы | Есть миофибриллы |
Клетки способны делиться | Волокна не могут делиться | Клетки не могут делиться |
Сокращаются медленно, слабо, ритмично | Сокращаются быстро, сильно | Сокращаются быстро, сильно, ритмично |
Выстилают внутренние органы (кишечник, матка, мочевой пузырь), формируют сфинктеры | Крепятся к скелету | Формируют сердце |
Вот и все основные характеристики поперечно-полосатой, гладкой и сердечной мышечных тканей. Теперь вы ознакомлены с их функциями, строением и главными различиями и сходствами.
Мышечные ткани классифицируются на гладкую и исчерченную или поперечнополосатую. Поперечнополосатая подразделяется на скелетную и сердечную. В зависимости от происхождения мышечные ткани делятся на 5 типов:
мезенхимные (гладкая мышечная ткань);
эпидермальные (гладкая мышечная ткань);
нейральные (гладкая мышечная ткань);
целомические (сердечная);
соматические или миотомные (скелетная поперечнополосатая).
ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ, РАЗВИВАЮЩАЯСЯ ИЗ СПЛАНХНОТОМНОЙ МЕЗЕНХИМЫ
локализуется в стенках полых органов (желудка, кровеносных сосудах, дыхательных путях и др.) и неполых органах (в мышце ресничного тела глаза млекопитающих). Клетки гладкой мышечной ткани развиваются из мезенхимоцитов, которые утрачивают отростки. В них развиваются комплекс Гольджи, митохондрии, гранулярная ЭПС и миофиламенты. В это время на гранулярной ЭПС активно синтезируется коллаген V типа, за счет которого вокруг клетки формируется базальная мембрана. При дальнейшей дифференцировке органеллы общего значения атрофируются, снижается синтез молекул коллагена в клетке, но повышается синтез сократительных белков миофиламентов.
СТРОЕНИЕ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ . Она состоит из гладких миоцитов, имеющих веретеновидную форму, длиной от 20 до 500 мкм. диаметром 6-8 мкм. Снаружи миоциты покрыты плазмолеммой и базальной мембраной.
Миоциты плотно прилежат друг к другу. Между ними имеются контакты - нексусы. В том месте, где имеются нексусы, в базальной мембране оболочки миоцитов есть отверстия. В этом месте плазмолемма одного миоцита приближается к плазмолемме другого миоцита на расстояние 2-3 нм. Через нексусы происходит обмен ионов, транспорт молекул воды, передача сократительного импульса.
Снаружи миоциты покрыты коллагеном V типа, образующим экзоцитоскелет клетки. Цитоплазма миоцитов окрашивается оксифильно. В ней содержатся слабо развитые органеллы общего значения: гранулярная ЭПС, комплекс Гольджи, гладкая ЭПС, клеточный центр, лизосомы. Эти органеллы располагаются у полюсов ядра. Хорошо развитые органеллы - митохондрии. Ядра имеют палочковидную форму.
В миоцитах хорошо развиты миофиламенты, являющиеся сократительным аппаратом клеток. Среди миофиламентов имеются
тонкие, актиновые, состоящие из белка актина;
толстые миозиновые, состоящие из сократительного белка миозина, которые появляются только после поступления к клетке импульса;
промежуточные филаменты, состоящие из коннектина и небулина.
В миоцитах отсутствует исчерченность потому, что все вышеперечисленные филаменты расположены неупорядоченно.
АКТИНОВЫЕ ФИЛАМЕНТЫ соединяются друг с другом и с плазмолеммой при помощи плотных телец. В тех местах, где они соединяются друг с другом, в тельцах содержится альфа-актинин; в тех местах, где филаменты соединяются с плазмолеммой - в тельцах содержится винкулин. Расположение актиновых филаментов преимущественно продольное, но они могут располагаться под углом по отношению к продольной оси. Миозиновые филаменты тоже располагаются преимущественно продольно. Филаменты располагаются так, что концы актиновых располагаются между концами миозиновых филаментов.
ФУНКЦИЯ ФИЛАМЕНТОВ - сократительная. Процесс сокращения осуществляется следующим образом: после поступления сократительного импульса пиноцитозные пузырьки, содержащие ионы кальция, приближаются к филаментам; ионы кальция запускают сократительный процесс, который заключается в том, что концы актиновых филаментов продвигаются глубже между концами миозиновых филаментов. Сила тяги прилагается к плазмолемме, с которой актиновые филаменты связаны при помощи плотных телец, в результате этого миоцит сокращается.
ФУНКЦИИ МИОЦИТОВ : 1) сократительная (способность к длительному сокращению); 2) секреторная (секретируют коллаген V типа, эластин, протеогликаны, так как имеют гранулярную ЭПС).
РЕГЕНЕРАЦИЯ гладкой мышечной ткани осуществляется 2 путями: 1) митотическое деление миоцитов; 2) преобразование в гладкие миоциты миофибробластов.
СТРОЕНИЕ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ КАК ОРГАНА . В стенке полых органов гладкие миоциты образуют пучки. Эти пучки окружены прослойками рыхлой соединительной ткани, которая называется перимизием. Прослойка соединительной ткани вокруг всего пласта мышечной ткани называется эпимизием. В перимизии и эпимизии проходят кровеносные и лимфатические сосуды и нервные волокна.
ИННЕРВАЦИЯ ГЛАДКОЙ МЫШЕЧНОЙ ТКАНИ осуществляется вегетативной нервной системой, поэтому сокращения гладкой мускулатуры не подчиняются воле человека (непроизвольные). К гладкой мышечной ткани подходят чувствительные (афферентные) и двигательные (эфферентные) нервные волокна. Эфферентные нервные волокна заканчиваются двигательными нервными окончаниями в прослойке соединительной ткани. При поступлении импульса из окончаний выделяются медиаторы, которые, диффузно распространяясь, достигают миоцитов, вызывая их сокращение.
ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ ЭПИДЕРМАЛЬНОГО ПРОИСХОЖДЕНИЯ находится в концевых отделах и мелких протоках желез, которые развиваются из кожной эктодермы (слюнные, потовые, молочные и слезные железы). Гладкие миоциты (миоэпителиоциты) располагаются между базальной поверхностью железистых клеток и базальной мембраной, охватывая базальную часть гландулоцитов своими отростками. При сокращении этих отростков сдавливается базальная часть гландулоцитов, благодаря чему из железистых клеток выделяется секрет.
ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ НЕЙРАЛЬНОГО ПРОИСХОЖДЕНИЯ развивается из глазных бокалов, вырастающих из нервной трубки. Эта мышечная ткань образует всего 2 мышцы, расположенные в радужной оболочке глаза: мышцу суживающую зрачок и мышцу расширяющую зрачок. Существует мнение, что мышцы радужки развиваются из нейроглии.
ПОПЕРЕЧНОПОЛОСАТАЯ СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ развивается из миотомов мезодермальных сомитов, поэтому называется соматической. Клетки миотомов дифференцируются в двух направлениях: 1) из одних образуются миосателлитоциты; 2) из других образуются миосимпласты.
ОБРАЗОВАНИЕ МИОСИМПЛАСТОВ . Клетки миотомов дифференцируются в миобласты, которые сливаются вместе и образуются мышечные трубочки. В процессе созревания мышечные трубочки превращаются в миосимпласты. При этом ядра смещаются к периферии, а миофибриллы - к центру.
СТРОЕНИЕ МЫШЕЧНОГО ВОЛОКНА . Мышечное волокно (miofibra) состоит из 2 компонентов: 1) миосателлитоцитов и 2) миосимпласта. Мышечное волокно имеет примерно такую же длину, как и сама мышца, диаметр - 20-50 мкм. Волокно снаружи покрыто оболочкой - сарколеммой, состоящей из 2 мембран. Наружная мамбрана называется базальной мембраной, а внутренняя - плазмолеммой. Между этими двумя мембранами располагаются миосателлитоциты.
ЯДРА МЫШЕЧНЫХ ВОЛОКОН располагаются под плазмолеммой, их количество может достигать нескольких десятков тысяч. Имеют вытянутую форму, не обладают способностью к дальнейшему митотическому делению. ЦИТОПЛАЗМА мышечного волокна называется САРКОПЛАЗМОЙ. В саркоплазме содержится большое количество миоглобина, включений гликогена и липидов; имеются органеллы общего значения, одни из которых развиты хорошо, другие - хуже. Такие органеллы как комплекс Гольджи, гранулярная ЭПС, лизосомы развиты слабо и располагаются у полюсов ядер. Хорошо развиты митохондрии и гладкая ЭПС.
В мышечных волокнах хорошо развиты миофибриллы, являющиеся сократительным аппаратом волокна. В миофибриллах имеется исчерченность потому, что миофиламенты в них расположены в строго определенном порядке (в отличии от гладкой мускулатуры). В миофибриллах 2 вида миофиламентов: 1) тонкие актиновые, состоят из белка актина, тропонина и тропомиозина; 2) толстые миозиновые состоят из белка миозина. Актиновые филаменты располагаются продольно, их концы находятся на одинаковом уровне и несколько заходят между концами миозиновых филаментов. Вокруг каждого миозинового филамента расположено 6 концов актиновых филаментов. В мышечном волокне имеется цитоскелет, включающий промежуточные нити (филаменты), телофрагму, мезофрагму, сарколемму. Благодаря цитоскелету одинаковые структуры миофибрилл (актиновые, миозиновые филаменты и др.) располагаются упорядоченно.
Тот участок миофибриллы, в котором находятся только актиновые филаменты, называется диском I (изотропный или светлый диск). Через центр диска I проходит Z-полоска, или телофрагма толщиной около 100 нм и состоящая из альфа-актинина. К телофрагме прикрепляются актиновые нити (зона прикрепления тонких нитей).
Миозиновые филаменты тоже располагаются в строго определенном порядке. Их концы также находятся на одном уровне. Миозиновые филаменты вместе с заходящими между ними концами актиновых филаментов образуют диск А (анизотропный диск, обладающий двулучепреломлением). Диск А также разделяется мезофрагмой, аналогичной телофрагме и состоящей из М-белка (миомизина).
В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов, заходящих между концами миозиновых нитей. Поэтому чем ближе концы актиновых филаментов расположены друг к другу, тем уже Н-полоска.
САРКОМЕР - это структурная и функциональная единица миофибрилл, представляющая собой участок, расположенный между двумя телофрагмами. Формула саркомера: 1,5 диска I + диск А + 1,5 диска I. Миофибриллы окружены хорошо развитыми митохондриями и хорошо развитой гладкой ЭПС.
ГЛАДКАЯ ЭПС образует систему L-канальцев, образующих в каждом диске сложные структуры. Эти структуры состоят из L-канальцев расположенных вдоль миофибрилл и соединяющихся с поперечно направленными L-канальцами (латеральными цистернами). ФУНКЦИИ гладкой ЭПС (системы L-канальцев): 1) транспортная; 2) синтез липидов и гликогена; 3) депонирование ионов кальция.
Т-КАНАЛЫ - это впячивания плазмолеммы. На границе дисков из плазмолеммы вглубь волокна происходит впячивание в виде трубочки, располагающейся между двумя латеральными цистернами.
ТРИАДА включает: 1) Т-канал и 2) 2 латеральные цистерны гладкой ЭПС. ФУНКЦИЯ ТРИАД заключается в том, что в расслабленном состоянии миофибрилл в латеральных цистернах накапливаются ионы кальция; в тот момент, когда по плазмолемме движется импульс (потенциал действия), он переходит на Т-каналы. При движении импульса по Т-каналу из латеральных цистерн выходят ионы кальция. Без ионов кальция невозможно сокращение миофибрилл, потому что в актиновых филаментах центры взаимодействия с миозиновыми нитями заблокированы тропомиозином. Ионы кальция осуществляют разблокирование этих центров, после чего начинается взаимодействие актиновых нитей с миозиновыми и начинается сокращение.
МЕХАНИЗМ СОКРАЩЕНИЯ МИОФИБРИЛЛ . При взаимодействии актиновых филаментов с миозиновыми происходит разблокирование ионами Са центров сцепления актиновых филаментов с головками молекул миозина, после чего эти выросты присоединяются к центрам сцепления на актиновых нитях и как веслом осуществляют движение актиновых филаментов между концами миозиновых. В это время телофрагма приближается к концам миозиновых филаментов, поскольку концы актиновых филаментов тоже приближаются к мезофрагме и друг к другу, постольку происходит сужение Н-полоски. Таким образом, во время сокращения миофибрилл происходит сужение диска I и Н-полоски. После прекращения потенциала действия ионы кальция возвращаются в L-канальцы гладкой ЭПС, тропомиозин снова блокирует в актиновых филаментах центры взаимодействия с миозиновыми нитями. Это приводит к прекращению сокращения миофибрилл, происходит их расслабление, т.е. актиновые нити возвращаются в исходное положение, восстанавливается ширина диска I и Н-полоски.
МИОСАТЕЛЛИТОЦИТЫ мышечного волокна располагаются между базальной мембраной и плазмолеммой сарколеммы. Эти клетки имеют овальную форму, их овальное ядро окружено тонким слоем бедной органеллами и слабо окрашиваемой цитоплазмы. ФУНКЦИЯ миосателлитоцитов - это камбиальные клетки, участвующие в регенерации мышечных волокон при их повреждении.
СТРОЕНИЕ МЫШЦЫ КАК ОРГАНА . Каждая мышца тела человека представляет собой своеобразный орган, имеющий свою структуру. Каждая мышца состоит из мышечных волокон. Каждое волокно окружено тонкой прослойкой рыхлой соединительной ткани - эндомизием. В эндомизии проходят кровеносные и лимфатические сосуды и нервные волокна. Мышечное волокно вместе с сосудами и нервными волокнами называется "мион". Несколько мышечных волокон образуют пучок, окруженный слоем рыхлой соединительной ткани, называемой перимизием. Вся мышца окружена прослойкой соединительной ткани, называемой эпимизием.
СВЯЗЬ МЫШЕЧНЫХ ВОЛОКОН С КОЛЛАГЕНОВЫМИ ВОЛОКНАМ СУХОЖИЛИЙ .
На концах мышечных волокон имеются впячивания сарколеммы. В эти впячивания входят коллагеновые и ретикулярные волокна сухожилий. Ретикулярные волокна прободают базальную мембрану и при помощи молекулярных сцеплений соединяются с плазмолеммой. Затем эти волокна возвращаются в просвет впячивания и оплетают коллагеновые волокна сухожилия, как бы привязывая их к мышечному волокну. Коллагеновые волокна образуют сухожилия, которые прикрепляются к костному скелету.
ТИПЫ МЫШЕЧНЫХ ВОЛОКОН. Имеется 2 основных типа мышечных волокон:
I тип (красные волокна) и II тип (белые волокна). Они различаются главным образом по быстроте сокращения, содержанию миоглобина, гликогена и активности ферментов.
1-й ТИП (красные волокна) характеризуются большим содержанием миоглобина (поэтому они красные), высокой активностью сукцинатдегидрогеназы, АТФ-азой медленного типа, не столь богатым содержанием гликогена, длительностью сокращения и малой утомляемостью.
2-й ТИП (белые волокна) отличаются малым содержанием миоглобина, низкой активностью сукцинатдегидрогеназы, АТФ-азой быстрого типа, богатым содержанием гликогена, быстрым сокращением и большой утомляемостью.
Медленный (красный) и быстрый (белый) тип мышечных волокон иннервируются разными типами моторных нейронов: медленным и быстрым. Кроме 1-го и 2-го типов мышечных волокон имеются промежуточные, обладающие свойствами тех и других.
В каждой мышце имеются все типы мышечных волокон. Их количество может меняться и зависит от физической нагрузки.
РЕГЕНЕРАЦИЯ ПОПЕРЕЧНОПОЛОСАТОЙ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ . При повреждении (разрыве) мышечных волокон их концы на месте повреждения подвергаются некрозу. После разрыва к обрывкам волокон поступают макрофаги, которые фагоцитируют некротизированные участки, очищая их от мертвой ткани. После этого процесс регенерации осуществляется 2 путями: 1) за счет повышения реактивности в мышечных волокнах и образования мышечных почек в местах разрыва; 2) за счет миосателлитоцитов.
1-й ПУТЬ характеризуется тем, что на концах разорванных волокон гипертрофируется гранулярная ЭПС, на поверхности которой синтезируются белки миофибрилл, мембранных структур внутри волокна и сарколеммы. В результате этого концы мышечных волокон утолщаются и преобразуются в мышечные почки. Эти почки по мере их увеличения приближаются друг к другу от одного оборванного конца к другому, наконец почки соединяются и срастаются. Между тем за счет клеток эндомизия происходит новообразование соединительной ткани между растущими навстречу друг к другу мышечными почками. Поэтому к моменту соединения мышечных почек формируется соединительнотканная прослойка, которая войдет в состав мышечного волокна. Следовательно, формируется соединительнотканный рубец.
2-й ПУТЬ регенерации заключается в том, что миосателлитоциты покидают места своего обитания и подвергаются дифференцировке, в результате которой превращаются в миобласты. Часть миобластов присоединяется к мышечным почкам, часть соединяется в мышечные трубочки, которые дифференцируются в новые мышечные волокна.
Таким образом, при репаративной регенерации мышц восстанавливаются старые мышечные волокна и образуются новые.
ИННЕРВАЦИЯ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ осуществляется двигательными и чувствительными нервными волокнами, заканчивающимися нервными окончаниями. ДВИГАТЕЛЬНЫЕ (моторные) нервные окончания являются концевыми приборами аксонов моторных нервных клеток передних рогов спинного мозга. Конец аксона, подходя к мышечному волокну делится на несколько веточек (терминалей). Терминали прободают базальную мембрану сарколеммы и далее погружаются вглубь мышечного волокна, увлекая за собой плазмолемму. В результате этого образуется нервномышечное окончание (моторная бляшка).
СТРОЕНИЕ НЕРВНОМЫШЕЧНОГО окончания . В нервномышечном окончании имеется две части (полюса): нервная и мышечная. Между нервной и мышечной частями имеется синаптическая щель. В нервной части (терминалях аксона моторного нейрона) имеются митохондрии и синаптические пузырьки, заполненные медиатором-ацетилхолином. В мышечной части нервномышечного окончания есть митохондрии, скопление ядер, отсутствуют миофибриллы. Синаптическая щель шириной 50 нм ограничена пресинаптической мембраной (плазмолеммой аксона) и постсинаптической мембраной (плазмолеммой мышечного волокна). Постсинаптическая мембрана образует складки (вторичные синаптические щели), на ней имеются рецепторы к ацетилхолину и фермент - ацетилхолинэстераза..
ФУНКЦИЯ нервно-мышечных окончаний . Импульс движется по плазмолемме аксона (пресинаптической мембране). В это время синаптические пузырьки с ацетилхолином подходят к плазмолемме, из пузырьков ацетилхолин изливается в синаптическую щель и захватывается рецепторами постсинаптической мембраны. Это повышает проницаемость этой мембраны (плазмолеммы мышечного волокна), в результате этого ионы натрия с наружной поверхности плазмолеммы переходят на внутреннюю, а ионы калия переходят на наружную поверхность - это и есть волна деполяризации или нервный импульс (потенциал действия). После возникновения потенциала действия ацетилхолинэстераза постсинаптической мембраны разрушает ацетилхолин и прекращается переход импульса через синаптическую щель.
ЧУВСТВИТЕЛЬНЫМИ НЕРВНЫМИ ОКОНЧАНИЯМИ (нервно-мышечными веретенами - fusi neuro-muscularis) заканчиваются дендриты чувствительных нейронов спинномозговых узлов. Нервно-мышечные веретена покрыты соединительнотканной капсулой, внутри которой имеются 2 типа интрафузальных (внутриверетенных) мышечных волокон: 1) с ядерной сумкой (в центре волокна утолщение, в котором имеется скопление ядер), они более длинные и более толстые; 2) с ядерной цепочкой (ядра ввиде цепочки располагаются по центру волокна), они тоньше и короче.
В окончания проникают толстые нервные волокна, которые кольцеобразно оплетают оба вида интрафузальных мышечных волокон и тонкие нервные волокна, заканчивающиеся гроздъевидными окончаниями на мышечных волокнах с ядерной цепочкой. На концах интрафузальных волокон имеются миофибриллы и к ним подходят двигательные нервные окончания. Сокращения интрафузальных волокон не обладают большой силой и не суммируются с остальными (экстрафузальными) волокнами мышцы.
ФУНКЦИЯ нервно-мышечных веретен заключается в восприятии скорости и силы растяжения мышцы. Если сила растяжения такова, что угрожает разрывом мышцы, то на сокращающиеся мышцы-антогонисты от этих окончаний рефлекторно поступают тормозные импульсы.
СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ развивается из переднего отдела висцеральных листков спланхнотома. Из этих листков выделяются 2 миоэпикардиальных пластинки: правая и левая. Клетки миоэпикардиальных пластинок дифференцируются в двух направлениях: из одних развивается мезотелий, покрывающий эпикард, из других - кардиомиоциты пяти разновидностей;
сократительные
пейсмекерные
проводящие
промежуточные
секреторные, или эндокринные
СТРОЕНИЕ КАРДИОМИОЦИТОВ . Кардиомиоциты имеют цилиндрическую форму, длиной 50-120 мкм, диаметром 10-20 мкм. Кардиомиоциты соединяются концами друг с другом и образуют функциональные сердечные мышечные волокна. Места соединения кардиомиоцитов называются вставочными дисками (discus intercalatus). В дисках имеются интердигитации, десмосомы, места прикрепления актиновых филаментов и нексусы. Через нексусы происходит обмен веществ между кардиомиоцитами.
Снаружи кардиомиоциты покрыты сарколеммой, состоящей из наружной (базальной) мембраны и плазмолеммы. От боковых поверхностей кардиомиоцитов отходят отростки, вплетающиеся в боковые поверхности кардиомиоцитов соседнего волокна. Это мышечные анастомозы.
ЯДРА кардиомиоцитов (одно-два), овальной формы, обычно полиплоидные, располагаются в центре клетки. МИОФИБРИЛЛЫ локализованы по периферии. ОРГАНЕЛЛЫ - одни развиты слабо (гранулярная ЭПС, комплекс Гольджи, лизосомы), другие - хорошо (митохондрии, гладкая ЭПС, миофибриллы). В оксифильной ЦИТОПЛАЗМЕ имеются включения миоглобина, гликогена и липидов.
СТРОЕНИЕ МИОФИБРИЛЛ такое же как и в скелетной мышечной ткани. Актиновые филаменты формируют светлый диск (I), разделенный телофрагмой, за счет миозиновых филаментов и концов актиновых образуется диск А (анизотропный), разделенный мезофрагмой. В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов.
Волокна сердечной мышцы отличаются от волокон скелетной мускулатуры тем, что состоят они из отдельных клеток - кардиомиоцитов, наличием мышечных анастомозов, центральным расположением ядер (в волокне скелетной мышцы - под сарколеммой), увеличенной толщиной диаметра Т-каналов, так как в их состав входит и плазмолемма и базальная мембрана (в волокнах скелетной мышцы - только плазмолемма).
ПРОЦЕСС СОКРАЩЕНИЯ в волокнах сердечной мышцы осуществляется по такому же принципу, как и волокнах скелетной мышечной ткани.
ПРОВОДЯЩИЕ КАРДИОМИОЦИТЫ характеризуются более толстым диаметром (до 50 мкм), более светлой цитоплазмой, центральным или эксцентричным расположением ядер, малым содержанием миофибрилл, более простым устройством вставочных дисков. В дисках меньше десмосом, интердигитаций, нексусов и мест прикрепления актиновых филаментов.
В проводящих кардиомиоцитах отсутствуют Т-каналы. Проводящие кардиомиоциты могут соединяться друг с другом не только своими концами, но и боковыми поверхностями. ФУНКЦИЯ проводящих кардиомиоцитов заключается в выработке и передаче сократительного импульса на сократительные кардиомиоциты.
ЭНДОКРИННЫЕ КАРДИОМИОЦИТЫ располагаются только в предсердиях, имеют более отростчатую форму, слабо развитые миофибриллы, вставочные диски, Т-каналы. В них хорошо развиты гранулярная ЭПС, комплекс Гольджи и митохондрии, в их цитоплазме имеются гранулы секрета.
ФУНКЦИЯ эндокринных кардиомиоцитов - секреция предсердного натрийуретического фактора (ПНФ), который регулирует сократимость сердечной мышцы, объем циркулирующей жидкости, артериальное давление, диурез.
РЕГЕНЕРАЦИЯ сердечной мышечной ткани только физиологическая, внутриклеточная. При повреждении волокон сердечной мышцы, они не восстанавливаются, а замещаются соединительной тканью (гистотипическая регенерация).
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Мышечные ткани объединяет способность к сокращению.
Особенности строения: сократительный аппарат, занимающий значительную часть в цитоплазме структурных элементов мышечной ткани и состоящий из актиновых и миозиновых филаментов, которые формируют органеллы специального назначения - миофибриллы .
Мышечные ткани представляют собой группу тканей различного происхождения и строения, объединенных на основании общего признака - выраженной сократительной способности, благодаря которой они могут выполнять свою основную функцию - перемещать тело или его части в пространстве.
Важнейшие свойства мышечных тканей. Структурные элементы мышечных тканей (клетки, волокна) обладают удлиненной формой и способны к сокращению благодаря мощному развитию сократительного аппарата. Для последнего характерно высокоупорядоченное расположение актиновых и миозиновых миофиламентов, создающее оптимальные условия для их взаимодействия. Это достигается связью сократимых структур с особыми элементами цитоскелета и плазмолеммой (сарколеммой), выполняющими опорную функцию. В части мышечных тканей миофиламенты образуют органеллы специального значения - миофибриллы. Для мышечного сокращения требуется значительное количество энергии, поэтому в структурных элементах мышечных тканей имеется большое количество митохондрий и трофических включений (липидных капель, гранул гликогена), содержащих субстраты - источники энергии. Поскольку мышечное сокращение протекает с участием ионов кальция, в мышечных клетках и волокнах хорошо развиты структуры, осуществляющие его накопление и выделение - агранулярная эндоплазматическая сеть (саркоплазматическая сеть), кавеолы.
Классификация мышечных тканей основана на признаках их (а) строения и функции (морфофункциональная классификация) и (б) происхождения (гистогенетическая классификация).
Морфофункциональная классификация мышечных тканей выделяет поперечнополосатые (исчерченные) мышечные ткани и гладкую мышечную ткань. Поперечнополосатые мышечные ткани образованы структурными элементами (клетками, волокнами), которые обладают поперечной исчерченностью вследствие особого упорядоченного взаиморасположения в них актиновых и миозиновых миофиламентов. К поперечнополосатым мышечным тканям относят скелетную и сердечную мышечную ткани. Гладкая мышечная ткань состоит из клеток, не обладающих поперечной исчерченностью. Наиболее распространенным видом этой ткани является гладкая мышечная ткань, входящая в состав стенки различных органов (бронхов, желудка, кишки, матки, маточной трубы, мочеточника, мочевого пузыря и сосудов).
Гистогенетическая классификация мышечных тканей выделяет три основных типа мышечных тканей: соматический (скелетная мышечная ткань), целомический (сердечная мышечная ткань) и мезенхимный (гладкая мышечная ткань внутренних органов), а также два дополнительных: миоэпителиальные клетки (видоизмененные эпителиальные сократимые клетки в концевых отделах и мелких выводных протоках некоторых желез) и мионейральные элементы (сократимые клетки нейрального происхождения в радужке глаза).
Скелетная поперечнополосатая (исчерченная) мышечная ткань по своей массе превышает любую другую ткань организма и является самой распространенной мышечной тканью тела человека. Она обеспечивает перемещение тела и его частей в пространстве и поддержание позы (входит в состав локомоторного аппарата), образует глазодвигательные мышцы, мышцы стенки полости рта, языка, глотки, гортани. Аналогичное строение имеет нескелетная висцеральная исчерченная мышечная ткань, которая обнаруживается в верхней трети пищевода, входит в состав наружных анального и уретрального сфинктеров.
мышечный миоцит сердечный скелетный
Скелетная поперечнополосатая мышечная ткань развивается в эмбриональном периоде из миотомов сомитов, дающих начало активно делящимся миобластам - клеткам, которые располагаются цепочками и сливаются друг с другом в области концов с образованием мышечных трубочек (миотубул) , превращающихся в мышечные волокна. Такие структуры, образованные единой гигантской цитоплазмой и многочисленными ядрами, в отечественной литературе традиционно именуют симпластами (в данном случае - миосимпластами), однако этот термин отсутствует в принятой международной терминологии. Некоторые миобласты не сливаются с другими, располагаясь на поверхности волокон и давая начало миосателлитоцитам - мелким клеткам, которые являются камбиальными элементами скелетной мышечной ткани. Скелетная мышечная ткань образована собранными в пучки поперечнополосатыми мышечными волокнами , являющимися ее структурно-функциональными единицами.
Мышечные волокна скелетной мышечной ткани представляют собой цилиндрические образования вариабельной длины (от миллиметров до 10-30 см). Их диаметр также широко варьирует в зависимости от принадлежности к определенной мышце и типу, функционального состояния, степени функциональной нагрузки, состояния питания и других факторов. В мышцах мышечные волокна образуют пучки, в которых они лежат параллельно и, деформируя друг друга, часто приобретают неправильную многогранную форму, что особенно хорошо видно на поперечных срезах. Между мышечными волокнами располагаются тонкие прослойки рыхлой волокнистой соединительной ткани, несущие сосуды и нервы - эндомизий. Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных анизотропных дисков (полос А) и светлых изотропных дисков (полос I). Каждый изотропный диск рассекается надвое тонкой темной линией Z - телофрагмой . Ядра мышечного волокна - сравнительно светлые, с 1-2 ядрышками, диплоидные, овальные, уплощенные - лежат на его периферии под сарколеммой и располагаются вдоль волокна. Снаружи сарколемма покрыта толстой базальной мембраной, в которую вплетаются ретикулярные волокна.
Миосателлитоциты (клетки-миосателлиты) - мелкие уплощенные клетки, располагающиеся в неглубоких вдавлениях сарколеммы мышечного волокна и покрытые общей базальной мембраной (см. рис. 88). Ядро миосателлитоцита - плотное, относительно крупное, органеллы мелкие и немногочисленные. Эти клетки активируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию. Сливаясь с остальной частью волокна при усиленной нагрузке, миосателлитоциты участвуют в его гипертрофии.
Миофибриллы образуют сократительный аппарат мышечного волокна, располагаются в саркоплазме по ее длине, занимая центральную часть, и отчетливо выявляются на поперечных срезах волокон в виде мелких точек.
Миофибриллы обладают собственной поперечной исчерченностью, причем в мышечном волокне они располагаются столь упорядоченно, что изотропные и анизотропные диски разных миофибрилл совпадают между собой, обусловливая поперечную исчерченность всего волокна. Каждая миофибрилла образована тысячами повторяющихся последовательно связанных между собой структур - саркомеров.
Саркомер (миомер) является структурно-функциональной единицей миофибриллы и представляет собой ее участок, расположенный между двумя телофрагмами (линиями Z). Он включает анизотропный диск и две половины изотропных дисков - по одной половине с каждой стороны. Саркомер образован упорядоченной системой толстых (миозиновых) и тонких (актиновьх) миофиламентов. Толстые миофиламенты связаны с мезофрагмой (линией М) и сосредоточены в анизотропном диске,
а тонкие миофиламенты прикреплены к телофрагмам (линиям Z), образуют изотропные диски и частично проникают в анизотропный диск между толстыми нитями вплоть до светлой полосы Н в центре анизотропного диска.
В мышечной, как в других тканях, различают два вида регенерации - физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличение числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.
Увеличение числа миофибрилл осуществляется посредством синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних миофибрилл. Кроме того возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык предшествующим миофибриллам, чем достигается их удлинение. Саркоплазматическая сеть и Т-канальцы в гипертрофирующемся волокне образуются за счет разрастания предшествующих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров). Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1-2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возрасте, а также в условиях малой мышечной нагрузки наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их функциональной способности.
Репаративная регенерация развивается после повреждения мышечных волокон. При этом способ регенерации зависит от величины дефекта. При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку. Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах, за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут навстречу друг другу, а затем сливаются, приводя к закрытию дефекта. Однако, репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться при определенных условиях: во-первых, при сохраненной двигательной иннервации мышечных волокон, во-вторых, если в область повреждения не попадают элементы соединительной ткани (фибробласты). Иначе на месте дефекта мышечного волокна развивается соединительно-тканный рубец.
Советским ученым А.Н. Студитским доказана возможность аутотрансплантации скелетной мышечной ткани и даже целых мышц при соблюдении определенных условий:
· механическое измельчение мышечной ткани трансплантата, с целью растормаживания клеток-сателлитов и последующей их пролиферации;
· помещение измельченной ткани в фасциальное ложе;
· подшивание двигательного нервного волокна к измельченному трансплантату;
· наличие сократительных движений мышц-антагонистов и синергистов.
Анатомически у новорожденных имеются все скелетные мышцы, но относительно веса тела они составляют всего 23% (у взрослого 44%). Количество мышечных волокон в мышцах такое же как у взрослого. Однако микроструктура мышечных волокон отличается: волокна меньше диаметром, в них больше ядер. По мере роста происходит утолщение и удлинение волокон. Это происходит за счет утолщения миофибрилл, оттесняющих ядра на периферию. Размеры мышечных волокон стабилизируются к 20 годам.
Мышцы у детей эластичнее, чем у взрослых. Т.е. быстрее укорачиваются при сокращении и удлиняются при расслаблении. Возбудимость и лабильность мышц новорожденных, ниже, чем взрослых, но с возрастом растет. У новорожденных даже во сне мышцы находятся в состоянии тонуса. Развитие различных групп мышц происходит неравномерно. В 4-5 лет более развиты мышцы предплечья, отстают в развитии мышцы кисти. Ускоренное согревание мышц кисти происходит в 6-7 лет. Причем разгибатели развиваются медленнее сгибателей. С возрастом изменяется соотношение тонуса мышц. В раннем детстве повышен тонус мышц кисти, разгибателей бедра т.д. постепенно распределение тонуса нормализуется.
Для сердца как органа характерна способность к регенерации путем регенераторной гипертрофии, при которой масса органа восстанавливается, но форма остается нарушенной. Подобное явление наблюдается после перенесенного инфаркта миокарда, когда масса сердца может восстановиться как целое, при этом на месте повреждения образуется соединительнотканный рубец, но орган гипертрофируется, т.е. нарушается форма. Происходит не только увеличение размеров кардиомиоцитов, но и пролиферация в основном в предсердиях и ушках сердца.
Ранее полагали, что дифференцировка кардиомиоцитов является необратимым процессом, связанным с полной потерей этими клетками способности к делению. Но на современном уровне многочисленные данные показывают то, что дифференцированные кардиомиоциты способны к синтезу ДНК и митозу. В исследовательских работах П.П. Румянцева и его учеников показано, что после экспериментального инфаркта миокарда левого желудочка сердца в клеточный цикл возвращается 60-70% предсердных кардиомиоцитов, возрастает число полиплоидных клеток, но это не компенсирует повреждение миокарда.
Установлено, что кардиомиоциты способны к митотическому делению (в том числе и клетки проводящей системы). В миокарде сердца особенно много одноядерных полиплоидных клеток с 16-32-кратным содержанием ДНК, но встречаются и двуядерные кардиомиоциты (13-14%) в основном октоплоидные.
В процессе регенерации сердечной мышечной ткани кардиомиоциты участвуют в процессе гиперплазии и гипертрофии, возрастает их плоидность, но уровень пролиферации клеток соединительной ткани в области повреждения оказывается в 20-40 раз выше. В фибробластах активизируется синтез коллагена, в результате чего репарация происходит путем рубцевания дефекта. Биологическое представление подобной адаптационной реакции соединительной ткани объясняется жизненной важностью сердечного органа, так как задержка с закрытием дефекта может привести к гибели.
Считалось, что у новорожденных, а возможно, и в раннем детском возрасте, когда способные к делению кардиомиоциты еще сохраняются, регенераторные процессы сопровождаются увеличением количества кардиомиоцитов. При этом у взрослых физиологическая регенерация осуществляется в миокарде в основном путем внутриклеточной регенерации, без увеличения количества клеток, т.е. в миокарде взрослого человека отсутствует пролиферация кардиомиоцитов. Но недавно получены данные о том, что в здоровом сердце человека 14 миоцитов из миллиона находится в состоянии митоза, завершающегося цитотомией, т.е. количество клеток не значительно, но увеличивается.
Применение современных методов клеточной биологии в клинических и экспериментальных исследованиях позволило перейти к выяснению клеточных и молекулярных механизмов повреждения и регенерации миокарда. Особенно интересны данные о том, что в перинекротических областях и в функционально перегруженном сердце происходит синтез эмбриональных миоакрдиальных белков и пептидов, а также белков, синтезирующихся во время клеточного цикла. Это подтверждает положение о сходстве механизмов регенерации и нормального онтогенеза.
Выяснилось также и то, что дифференцированные кардиомиоциты в культуре способны к активному митотическому делению, что, возможно, объясняется не полной утратой, а подавлением способности кардиомиоцитов возвращаться в клеточный цикл.
Важной задачей теоретической и практической кардиологии является разработка способов стимуляции восстановления поврежденного миокарда, т.е. индукции миокардиальной регенерации и уменьшения соединительнотканного рубца. Одно из направлений исследований предоставляет возможность переноса регуляторных генов, которые превращают фибробласты рубца в миобласты или трансфекция в кардиомиоциты генов, контролирующих рост новых клеток. Другим направлением является перенос в область повреждения фетальных скелетных и миокардиальных клеток, которые могли бы участвовать в восстановлении сердечной мышцы. Также проводятся эксперименты по трансплантации скелетной мышцы в сердце, показывающие образование в миокарде участков сокращающейся ткани и улучшающие функциональные показатели миокарда. Перспективным может быть лечение с применением факторов роста, оказывающих как прямое, так и косвенное воздействие на поврежденный миокард, например, улучшение ангиогенеза.
Гладкие мышечные ткани
По происхождению различают три группы гладких (или неисчерченных) мышечных тканей -- мезенхимные, эпидермальные и нейральные.
Мышечная ткань мезенхимного происхождения
Гистогенез. Стволовые клетки и клетки-предшественники гладкой мышечной ткани, будучи уже детерминированными, мигрируют к местам закладки органов. Дифференцируясь, они синтезируют компоненты матрикса и коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.
Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладкомышечная клетка, или гладкий миоцит -- это веретеновидная клетка длиной 20--500 мкм, шириной 5--8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндо плазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.
Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно, точнее косо-продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца.
Миозиновые филаменты находятся в деполимеризованном состоянии. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует впячивания -- кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков (здесь из пузырьков освобождается кальций). Это влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и «миофибриллы» распадаются. Таким образом, актино-миозиновые комплексы существуют в гладких миоцитах только в период сокращения.
Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.
Регенерация. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).
В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы.
Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова.
Гладкая мышечная ткань эпидермального происхождения
Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках -- сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.
Гладкая мышечная ткань нейрального происхождения
Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы -- суживающую и расширяющую зрачок.
Заключение
Как уже было отмечено, мышечные ткани - это группа тканей организма различного происхождения, объединяемых по признаку сократимости: поперечнополосатая (скелетная и сердечная), гладкая, а также специализированные сократимые ткани - эпителиально-мышечная и нейроглиальная, входящая в состав радужки глаза.
Поперечнополосатая скелетная мышечная ткань возникает из миотомов, входящих в состав элементов сегментированной мезодермы - сомитов.
Гладкая мышечная ткань человека и позвоночных животных развивается в составе производных мезенхимы, так же как и ткани внутренней среды. Однако для всех мышечных тканей характерно сходное обособление в составе эмбрионального зачатка в виде клеток веретенообразной формы - мышцеобразовательных клеток, или миобластов.
Сокращение мышечного волокна заключается в укорочении миофибрилл в пределах каждого саркомера. Толстые (миозиновые) и тонкие (актиновые) нити, в расслабленном состоянии связанные только концевыми отделами, в момент сокращения осуществляют скользящие движения навстречу друг другу. Выделение необходимой для сокращения энергии происходит в результате превращения АТФ в АДФ под влиянием миозина. Ферментная активность миозина проявляется при условии оптимального содержания Са2+, которые накапливаются в саркоплазматической сети.
Список литературы
1. Гистология. Под редакцией Ю.И. Афанасьевой, Н.А. Юриной. М.: “Медицина”, 1999 г.
2. Р. Эккерт, Д. Рендел, Дж. Огастин “Физиология животных” - 1 т. М.: “Мир”, 1981 г.
3. К.П. Рябов “Гистология с основами эмбриологии” Минск: “Высшая школа”, 1990 г.
4. Гистология. Под редакцией Улумбекова, проф. Ю.А. Челышева. М.: 1998 г.
5. Гистология. Под редакцией В.Г. Елисеева. М.: “Медицина”, 1983 г.
Размещено на Allbest.ru
...Подобные документы
Структурные особенности мышечных тканей. Изучение механизма мышечного сокращения и аппарата передачи возбуждения. Гистогенез и регенерация мышечной ткани. Принципы работы сократительных, проводящих и секреторных кардиомиоцитов сердечной мышечной ткани.
шпаргалка , добавлен 14.11.2010
Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).
презентация , добавлен 08.11.2013
Изучение особенностей строения тканей животных, функционирование и разновидности. Проведение исследования характерной черты строения соединительной и нервной тканей. Структура плоской, кубической, мерцательной и железистой эпителии. Виды мышечной ткани.
презентация , добавлен 08.02.2015
Общая характеристика и возрастные особенности хрящевой ткани. Виды хрящевой и костной ткани. Общая характеристика и возрастные особенности костной ткани. Особенности строения мышечной ткани в детском и в пожилом возрасте. Скелетная мышечная ткань.
презентация , добавлен 07.02.2016
Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.
реферат , добавлен 11.09.2009
Эпителиальная ткань, ее регенерационная способность. Соединительные ткани, участвующие в поддержании гомеостаза внутренней среды. Клетки кровы и лимфы. Поперечнополосатые и сердечные мышечные ткани. Функции нервных клеток и тканей животных организмов.
реферат , добавлен 16.01.2015
Изучение видов тканей животных, а также функций, которые они выполняют. Особенности строения эпителиальной, соединительной, мышечной и нервной группы тканей. Определение месторасположения каждой группы и значения для жизнедеятельности организма животного.
презентация , добавлен 18.10.2013
Общее понятие и разновидности колебаний. Характеристика процессов растяжения (сжатия), сдвига, изгиба, кручения. Механические свойства костной и сосудистой тканей. Специфика мышечной ткани, основные режимы работы мышц – изометрический и изотонический.
контрольная работа , добавлен 19.03.2014
Клетка как основная структурная единица организма. Описание ее строения, жизненных и химических свойств. Строение и функции эпителиальной и соединительной, мышечной и нервной тканей. Органы и перечень системы органов человека, их назначение и функции.
презентация , добавлен 19.04.2012
Физиология и биохимия мышечной деятельности как важная составляющая обмена веществ в организме. Типы мышечной ткани и соответственно мышц, различающихся по структуре мышечных волокон, характеру иннервации. Влияние физических нагрузок разной интенсивности.